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What are OAM beams?

1992- Visible orbital angular momentum (OAM)
laser beams.
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Motivations

OAM beams are useful in optical
communications, imaging, magnetics, and
guantum information science

Reliable phase detection is essential for
development of future technologies
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Gerchberg-Saxton Phase Retrieval
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Intensity and phase in one plane
allows propagation of beam to
another plane

Intensity in two different planes
allows the calculation of the phase
in the two planes

Original GS: use a focal point and
an image infinitely far away from
the focal point

Our technique: oversampled
intensity measurement



The Gerchberg-Saxton Algorithm
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Data

Retrieval - Simulated Data

Actual Beam Propagated Beam Difference in Intensity,
Error = 0.019069




Data

Retrieval- Experimental Data

Actual Beam Propagated Beam Difference in Intensity,
Error= 0.13379




Handling wavelength

* |n original GS and our main algorithm, the retrieval algorithm must know the
wavelength of the laser

* For a single wavelength, the algorithm can reliably determine the wavelength
within about 5 nm

* For multiple wavelengths, the algorithm does not perform very well
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One side of focus

* For EUV OAM beams, like the Science article, optics have very poor efficiency
* Without optics, we cannot get a full profile of the focal point of these beams
* If we can measure only planes after the focus, ©
* Preliminary tests have shown this looks promising
Results when half of the images are used:

Schematic of light Actual Beam Propagated Beam
exiting fiber

Difference in Intensity, Image Number 2
Error = 0.11552 Total error (0-1) =

0.091393

Number of Iterations =

100
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Comparison to other techniques

* M? uses the same information to compute beam divergence characteristics (2 numbers)

* Shack-Hartmann is an expensive (~$4000) wavefront sensor that can measure OAM
content but has low spatial resolution and relatively narrow useful wavelength range

(cannot be used in VUV/EUV)
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Conclusion

 We have created a powerful beam characterization device that is
capable of comprehensively characterizing a wide variety of
beams.

 [tis able to gather more information than traditional

characterization methods from the same data set and achieve
higher resolution

* The algorithm can determine wavelength for a single-wavelength
beam

* Preliminary results show difficulty with several wavelengths and
with sampling only on one side of the focus




Next Steps

* Analyzing the algorithm performance

* Exploring the capabilities of the algorithm for
multi-wavelength handling

* Optimizing for speed and accuracy, and extending
this to handling images from only one side of the

focus
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Setup

* The optical setup is identical to that of an M2.
SIMPLE!

* M?is a measure of beam quality/astigmatism and
ranges from 0-1




Scheme for the generation of EUV beams Time-dependent OAM of

with self-torque __ self-torqued EUV beams
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