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1 Introduction

In this project, we study methods of computing the volume of high-dimensional
convex bodies. We begin by analyzing the volume of a ball in Rn by interpreting
its theoretical volume as the sum of infinitely thin cross-sectional areas using
integrals. However, we show that the deterministic methods used to describe
the ball’s volume fail when n becomes large, and then we turn to the use of
Monte-Carlo algorithms. We then analyze the unit hypercube using Monte-
Carlo metho ds and ultimately compute the volume of the unit ball in high
dimensions.

2 Background

In this project we will frequently be discussing balls and cubes. The inside of
a sphere in any dimension is referred to as a ball. All balls with radius r in Rn
are defined to be

Bn(r) = {x ∈ Rn; || x ||≤ r} (1)

Cubes are the inside of a cube in any dimension. All cubes with face length
l in Rn, centered at the origin are defined to be

Kn(l) = {x = [x1 . . .xn] ∈ Rn; || −1
2
≤ x ≤ 1

2
||} (2)

We define the terms length, area, and volume as follows: The word volume
is used for a set A ⊂ Rn, and we write vol(A) to denote the

Length: the volume of a set A for A on the real line (n = 1).
Area: the volume of a set A for A in the plane (n=2)
Volume: the volume of a set A for AεRn where n ≥ 3.
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3 The volume of a ball in Rn

3.1 V (B1(1)) and V (B2(1))

The ball of radius r in Rn is defined as

Bn(r) = {xεRn; || x ||≤ r} (1)

From this we have the V (B1(1)) = 1 and V (B2(1)) = π since the volume of
B1(r) is the length of the set which is just equal to r, and the volume of B2(r)
is the area of the circle of radius r.

3.2 A proof

From Cavalier’s Principle, we have

V (Bn(1)) = V (Bn−1(1))

∫ π

0

sinn(θ)dθ (2)

Using this, we can say that the volume of an object in Rn can be expressed
as an integral of the cross sectional areas of the object. This gives us

V (Bn(1)) =

∫ 1

−1
V
(
Bn−1

(√
1− x2n

))
dxn (3)

We know

V (Bn(r)) = rnV (Bn(1)) (4)

We notice comparing (3) and (4) that we have r =
√

1− x2n and thus

V (Bn(1)) =

∫ 1

−1

(√
1− x2n

)n−1
V
(
Bn−1(1)

)
dxn (5)

V (Bn−1(1)) is a constant, so it can be brought outside of the integral.

V (Bn(1)) = V
(
Bn−1(1)

)∫ 1

−1

(√
1− x2n

)n−1
dxn (6)

Now, we set xn = cos(θ) which gives us dxn = − sin(θ)dθ and therefore

V (Bn(1)) = V
(
Bn−1(1)

)∫ 0

π

−
(√

1− cos2(θ)
)n−1

sin(θ)dθ (7)

From the identity cos2(θ) + sin2(θ) = 1, we get

V (Bn(1)) = V (Bn−1(1))

∫ π

0

sinn(θ)dθ (8)

Which is exactly the same as (2) so we have shown by direct proof that the
statement is true.
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3.3 Another proof

We wish to prove that

In =
n− 1

n
In−2, n ≥ 3 (9)

Where

In =

∫ π

0

sinn(θ)dθ (10)

We start by showing the base case:

I2 =

∫ π

0

sin2(θ)dθ (11)

I2 =

∫ π

0

1− cos(2θ)

2
dθ

Breaking the integral apart gives us

I2 =
1

2

∫ π

0

1dθ − 1

2

∫ π

0

cos(2θ)dθ

Let u = 2θ. Thus, du = 2dθ which gives us

I2 =
1

2

∫ π

0

1dθ −
∫ 2π

0

cos(u)dθ

I2 =
1

2

[
θ
]θ=π
θ=0
−
[

sinu
]u=2π

u=0

I2 =
π

2

We now check if (9) holds true for the base case.

I2 =
(2− 1)

2
I(2−2) (12)

I2 =
1

2
I0

Check I0:

I0 =

∫ π

0

1dθ =
[
θ
]π
0

= π (13)

This gives us I2 = π
2 which is the same as was found by solving (11), so the

base case is true.
We now assume that (9) is true for n and check that it will hold for n + 1.

First, we manipulate the integral form of In from (10). Performing integration
by parts setting u = sinn−1(θ) and dv = sin(θ) gives us
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In =
[

sinn−1(θ) cos(θ)
]π
0

+

∫ π

0

(n− 1) sinn−2(θ) cos2(θ)dθ (14)

In = (n− 1)

∫ π

0

sinn−2(θ)(1− sin2(θ))dθ

In = (n− 1)(In−2 − In) (15)

Which yields

In =
n− 1

n
In−2, n ≥ 3 (16)

And thus, we have shown that this is true by direct proof.

3.4 One More Proof

We wish to prove that, for n ≥ 1,

I2n−1I2n =
2π

2n
(17)

I2nI2n+ 1 =
2π

2n+ 1
(18)

First we will prove (17). From (9) we have

I2n−1 =
2n− 2

2n− 1
I2n−3 (19)

I2n−3 =
2n− 4

2n− 3
I2n−5

I2n−5 =
2n− 6

2n− 5
I2n−7

...

Putting these together will give us

I2n−1 =
(2n− 2

2n− 1

)(2n− 4

2n− 3

)(2n− 6

2n− 5

)
. . .
(1

2

)
I1 (20)

We also get

I2n =
2n− 1

2n
I2n−2 (21)

I2n−2 =
2n− 3

2n− 2
I2n−4

I2n−4 =
2n− 5

2n− 4
I2n−6

...
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Putting these together will give us

I2n =
(2n− 1

2n

)(2n− 3

2n− 2

)(2n− 5

2n− 4

)
. . .
(2

3

)
I0 (22)

We now multiply (20) and (22) to get

I2n−1I2n =
(2n− 2

2n− 1

)(2n− 4

2n− 3

)
. . .
(1

2

)
I1

(2n− 1

2n

)(2n− 3

2n− 2

)
. . .
(2

3

)
I0 (23)

Reordering gives us

I2n−1I2n =
(2n− 1

2n

)(2n− 2

2n− 1

)(2n− 3

2n− 4

)
. . .
(2

3

)(1

2

)
I1I0 (24)

Every term’s numerator is canceled by the following terms denominator leav-
ing us with

I2n−1I2n =
I1I0
2n

(25)

Now, we simpy calculate I1 and I0.

I1 =

∫ π

0

sin(θ)dθ =
[
− cos(θ)

]π
0

= 2 (26)

I0 =

∫ π

0

1dθ =
[
θ
]π
0

= π (27)

Thus, we have proven

I2n−1I2n =
2π

2n
(28)

Now we will prove (18). From (9) we have

I2n+1 =
2n

2n+ 1
I2n−1 (29)

I2n−1 =
2n− 2

2n− 1
I2n−3

I2n−3 =
2n− 4

2n− 3
I2n−5

...

Putting these together will give us

I2n+1 =
( 2n

2n+ 1

)(2n− 2

2n− 1

)(2n− 4

2n− 3

)
. . .
(1

2

)
I1 (30)

We now multiply (22) and (30) to get
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I2nI2n+1 =
(2n− 1

2n

)(2n− 3

2n− 2

)
. . .
(2

3

)
I0

( 2n

2n+ 1

)(2n− 2

2n− 1

)
. . .
(1

2

)
I1 (31)

Reordering gives us

I2nI2n+1 =
( 2n

2n− 1

)(2n− 1

2n

)(2n− 2

2n− 1

)
. . .
(2

3

)(1

2

)
I1I0 (32)

Every term’s numerator is canceled by the following terms denominator leav-
ing us with

I2nI2n+1 =
I1I0
2n+!

(33)

We know that I1 = 2 and I0 = π (see (26) and (27)). Thus we have proven
that,

I2nI2n+1 =
2π

2n+ 1
(34)

3.5 Conclusion from proofs

We wish to draw a conclusion from the proofs performed in the last 3 sections.
We know now from (2) that

V (B2n(1)) = V (B2n−1(1))

∫ π

0

sin2n(θ)dθ (35)

V (B2n(1)) = V (B2n−1(1))I2n

V (B2n(1)) = V (B2n−2(1))I2n

∫ π

0

sin2n−1(θ)dθ

V (B2n(1)) = V (B2n−3(1))I2nI2n−1

∫ π

0

sin2n−1(θ)dθ

...

V (B2n(1)) = V (B1(1))I2nI2n−1 . . . I2I1 (36)

From section 3.1 we know that that V (B1(1)) = 1 and from (17) that
I2nI2n−1 = π

n thus we have

V (B2n(1)) =
πn

n!
(37)

We can also draw a similar conclusion for V (B2n+1(1).

V (B2n+1(1)) = V (B2n(1))

∫ π

0

sin2n+1(θ)dθ (38)
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V (B2n+1(1)) = V (B2n(1))I2n+1

V (B2n+1(1)) = V (B2n−1(1))I2n+1

∫ π

0

sin2n(θ)dθ

V (B2n+1(1)) = V (B2n−2(1))I2n+1I2n

∫ π

0

sin2n(θ)dθ

...

V (B2n+1(1)) = V (B1(1))I2n+1I2n . . . I2I1 (39)

From section 3.1 we know that that V (B1(1)) = 1 and from (18) that
I2n+1I2n = 2π

2n+1 thus we have

V (B2n+1(1)) =
2n+1πn

1 · 3 · 5 · . . . · (2n+ 1)
(40)

Which is the same as

V (B2n+1(1)) =
πn

( 1
2 ) · ( 3

2 ) · ( 5
2 ) · . . . · (n+ ( 1

2 ))
(41)

3.6 A Theoretical Ratio

The theoretical ratio of points generated inside a hypercube [−1, 1]n that ran-
domly fall in the ball of dimension in (Bn(1)) will be equal to

lim
n→∞

vol
(
Bn(1)

)
vol
(

[−1, 1]n
) (42)

We have not yet found a specific formula for V (Bn(1)) but it can be approx-
imated by the average of V (B2n(1)) and V (B2n+1(1))

In section 3.5 we found that these are

V (B2n(1)) =
πn

n!
(43)

V (B2n+1(1)) =
πn

( 1
2 ) · ( 3

2 ) · ( 5
2 ) · . . . · (n+ ( 1

2 ))
(44)

Averaging these yields

V (B2n(1))V (B2n+1(1)) =
π2n

n!
(

( 1
2 ) · ( 3

2 ) · ( 5
2 ) · . . . · (n+ ( 1

2 ))
) (45)

The volume of a cube in Rn with side length two is simply 2n so (42) becomes
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lim
n→∞

2nπ2n

n!
(

( 1
2 ) · ( 3

2 ) · ( 5
2 ) · . . . · (n+ ( 1

2 ))
) (46)

Which evaluates to 0.

4 The Hypercube in High Dimensions

4.1 Pairwise Distances in the Hypercube

Within the world that humans can intuitively interpret, points in space can
be represented by a set of coordinates. In one-dimensional space, representing
a coordinate only requires a single value, which can be intuitively described
as the x-coordinate. To then represent a coordinate in a dimension one step
higher, in the two-dimensional coordinate plane, it only requires one additional
value, making the coordinate a set of two values. Humans are fortunate enough
to be able to visualize space up to the third-dimension, but higher dimensions
than those are outside the limits of human intuition. However, mathematically,
the foundations of coordinates remain exactly the same in higher dimensions,
and points resting in a higher dimensions only require a set of values whose
size is equal to the dimension in which it rests, which can then be general-
ized to Xn = {a1, a2, . . . , an} with n being our desired dimension. Then, when
generating a collection of random points within a hypercube, each set of co-
ordinate values becomes a subset within the set of points, giving us a set of
HN = {X1, X2, . . . , XN} where N is equal to the desired number of samples.
Since H is our set of subsets, the entire set of points and coordinate values can
be stored in a matrix of size n by N , where each row contains the coordinates of
its respective point. MATLAB’s rand() function makes the generation process
incredibly easy. The function generates a matrix of random real numbers on a
domain of x ε [0, 1], and we can define its size to be equal to our desired dimen-
sion of 100 and number of samples at 400. Then, to transform the randomly
generated values to fit our domain, it’s as simple as multiplying them by the
difference in the upper and lower bounds and then adding the lower bound.
Since our desired domain still has a length of 1, we don’t really need to include
it, but by subtracting 1

2 from the randomly generated values, we end up with
our points properly on the domain of x ε [−12 ,

1
2 ].

H(N,n) = (
1

2
+

1

2
) · rand(N,n)− 1

2
(1)

Once our set of points is organized into a matrix, calculation of the pairwise
distances between each point becomes an easy task. In mathematics, regardless
of the number of dimensions, the distance between each point is calculated by
taking the square root of the total sum of each coordinate difference squared.
This is a property that can be generalized by the equation below, with Dij being
the distance between any two points, i and j, in the set of H.
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Dij =

√ n∑
k=0

(Hik −Hjk)2 (2)

Since we want the pairwise distances for all given points on our set, a matrix
in which each point is compared to one another is exactly what we want to
use. By using simple for() loops in Matlab, we can script a program that cycles
through all coordinates and calculates the distance between them, resulting in
a matrix of size N by N that contains the pairwise distances between every
single point. Then, while plotting the histogram, we simply need to omit any
zero values that were calculated from a point comparing to itself, which is easily
solved by utilizing Matlab’s nonzeros() function. Once plotted, we end up with
the histogram similar to the one below.

Figure 1: In higher dimensions, the mean distance between points is greater
than the length of its domain.

The mean distance, represented by the red, dashed, vertical line, is easily
calculable by dividing the total sum by the number of connected lines, repre-
sentable by the equation below. Since self-referential points aren’t counted as a
line, the total number of lines is equal to our number of samples N multiplied
by N − 1. The self-referential points have a distance equal to zero anyways, so
their values aren’t added when calculating the mean.
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Davg =

∑N
i=1

∑N
j=1Dij

N(N − 1)
(3)

For the histogram above, calculating the mean pairwise distance results in
a value of 4.06852, which is far greater than the size of our specified domain.
While a result like this might initially seem incorrect, a similar instance can
already be found in both two and three dimensions. On a domain of x ε [0, 1],
the maximum possible distance between two points is equal to the square root
of the dimension in which they are plotted, where the length in two dimensions
and three dimensions is

√
2 and

√
3 respectively. So, in our unit hypercube

of 100 dimensions, any length less than
√

100, and thus 10, is valid. Besides,
since only a single square root is taken when determining distance regardless of
dimension size, then having a larger sum inside the square root will only further
increase the resulting value.

4.2 Mean Angle

While trying to find the angle between two vectors in either two or three di-
mensional space, it’s always still possible fall back to the trusty protractor for
answers. However, in higher dimensions, the inability for humans to intuit
coordinates makes the previously handy dandy protractor completely useless.
Fortunately, there exists a far more reliable method of calculating the angle
between vectors, and it works not only in two and three dimensional space, but
higher ones as well. That method is by using the definition of the dot product.

u = ||u||||v|| cos(θ) (4)

⇓

θ = cos−1
( u · v
||u||||v||

)
(5)

u · v = u1v1 + u2v2 + +unvn (6)

Since the dot product of two vectors is defined as the total sum of the
products of each matching coordinate, then as long as two vectors have sets of
equal length, the dot product between them can always be calculated. Then,
since magnitude is simply a calculation of a vector’s distance, we can find them
by taking the square root of the sum of squared coordinates. To calculate all
the pairwise angles found between vectors, we take a similar approach to how
we calculated the pairwise distances between points, and that is by comparing
all the vectors to one another and storing them in a matrix we’ll label A. Since
we’re calculating vectors that extend from the origin, the coordinates from our
existing set of points suffice for their values. While looping through all pairings
of vectors, we take the dot product of each one and divide it by their multiplied
magnitudes. Once we have this value, we take the inverse cosine of it to calculate
our angles. For easier interpretation, the values were converted from radians to
degrees.
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Aij = cos−1
( Hi ·Hj

||Hi||||Hj ||

)
(7)

Now that we have our matrix of pairwise angles set up, we can actually
calculate the mean angle in the exact same fashion we did for calculating the
mean edge distance. To get our mean angle, we take the sum of all angles and
divide it by the total number of pairings.

Aavg =

∑N
i=1

∑N
j=1Aij

N(N − 1)
(8)

Figure 2: As the number of dimensions increases, the resulting range of pairwise
angles tightens, but the mean angle stays roughly around 90◦.

When calculating the mean angle of the data used in the histogram above,
it gives us a value of 89.99856◦. Given that the data nearly balances itself out
on both sides of the histogram, it makes sense for the mean value to be close to
90◦: an angle that lies directly in the middle of the domain of θ ε [0◦, 180◦]. So,
even though higher dimensions tightens the range of possible pairwise angles,
the mean angle still stays close to the midpoint of the domain at 90◦.
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5 The Unit Ball in High Dimensions

In this section, we generate samples of points uniformly inside the unit ball in
Rn. This is equivalent to generating 10,000 vectors. If the norm of a given
vector is less than one, we count it as inside the sphere.
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Figure 3: A plot of the number of points outside of the sphere as a function of
dimension, n. The plot increases until n=15, at which point all of the points
are outside of the sphere. We had a sample size of 500,000 points.
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Figure 4: A plot of the number of points outside of the sphere as a function of
dimension, n. The plot increases until n=15, at which point all of the points
are outside of the sphere. We had a sample size of 500,000 points.

From the plot above, we show that the total number of points outside of the
sphere increases as dimension increase. At n=15, all of the points are outside
of the sphere, meaning that the volume of the sphere is zero.
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Figure 5: A plot of the number of points outside of the sphere as a function of
dimension, n. The plot increases until n=15, at which point all of the points
are outside of the sphere. We had a sample size of 500,000 points.
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Figure 6: A plot of the volume of the sphere as a function of dimension. The
volume of the sphere increases until n=5, and then decreases until n=17, at
which point the volume of the sphere becomes zero.

Since the theoretical ratio and the Monte-Carlo approximation yield similar
values, we conclude that the Monte-Carlo method is a practical method for
finding the volume of a sphere in high dimensions.

6 Conclusion

In this project we worked through many steps to find an approximation for the
theoretical ratio of the volume of the hyperball to the volume of the hypercube.
We found that cubes in higher dimensions behave quite similarly to cubes in
dimensions we can perceive. Both the theoretical calculations and the Monte-
Carlo approximation predict that the volume of an n-dimensional unit sphere is
zero as n goes to infinity. We conclude that the Monte-Carlo method is a very
practical method for computing the volume of a sphere in high-dimension. This
result holds for any convex body.
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