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1 Background

The year is around 3,025,002 C.E. and this is a massive achievement for hu-
mankind. My name is Marty and I am currently alone on NASA Spaceship
Icarus, orbiting the black hole V616 Monocerotis. I’ve just made a terrible er-
ror and ejected my enemy Larry out of the escape hatch. As I watch him drift
towards the void, I realize that I must save him. Currently, I am orbiting at a
Schwarzschild radius of 2 from the center of V616. The event horizon is at a
radius of 1, so I don’t have much time.

2 Initial Problem

To model the case of Larry falling towards the black hole, I present the following
ordinary differential equation, where x(t) represents the radial distance from the
center of the black hole to Larry:

dx

dt
= e−x+1 − 1, x(0) = 2 (1)

where t is in seconds and x is radial distance in Schwarzschild radii. Note
that equation (1) is first-order, nonlinear, autonomous, and separable. Equi-
librium solutions occur when dx

dt = 0. This occurs at the event horizon of
x=1 Schwarzschild radius. This makes sense because everything should be ap-
proaching the event horizon as it gets pulled toward the black hole. Due to
the distortion caused by the immense gravitational field of the black hole, from
my perspective, Larry will never appear to cross the event horizon of x=1. As
a result, when x<1, the equation cannot depict the physics of the situation.
The initial condition x(0)=2 is used, because at time t=0, Larry was on the
spaceship, which is orbiting at a radius of 2.
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Figure 1: Direction Field of dx
dt = e−x+1 − 1.

Solutions for this ODE exist and are unique. By Picard’s theorem, because
dx
dt = f(t, x) is continuous on the region R = (t, x)|0 < t < 10, 1 < x < 2 and

t0 = 0, x0 = 2 ∈ R. Since dx
dt = e−x+1 − 1 is continuous for all x and t, there

exists a solution for t in the interval (t0 − h, t0 + h). Since fx(t, x) = −e−x+1 is
also continuous for all x and all t, the solution is unique.

We can find the velocity by plugging in a given value of x(t) into the DE
v(t) = dx

dt . The initial velocity of our enemy can be calculated by using x(0)=2
since this is the initial condition of our equation.

dx

dt
= e−2+1 − 1 = e−1 − 1 ≈ −0.6321 [Schwarzschild radii/second]

The calculated analytic solution to the ODE was calculated to be:

x(t) = ln(e− e− e2

et
)

2



0 1 2 3 4 5 6 7 8 9 10

Time(s)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

D
is

ta
n
c
e
 f
ro

m
 B

la
c
k
 H

o
le

 (
S

c
h
w

a
rz

s
c
h
ild

 r
a
d
ii)

Euler Approximations of ODE

h=1

h=0.1

h=0.01

actual

Figure 2: Euler Approximation of dx
dt = e−x+1 − 1 with varying step sizes.
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Figure 3: Absolute Error of Euler Approximations of dx
dt = e−x+1 − 1

The total error of each approximation is shown below.

Step Size Error
1 0.4005

0.1 0.0390
0.01 0.0039

I proceeded to determine the optimal number of steps needed to optimize the
computation time by plotting the total error as a function of the number of
steps taken.
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Figure 4: Log-log plot of total error as a function of steps taken N, 1¡N¡10,000

Based on the graph, we should use 6 steps, which is where the error begins
decreasing linearly.

3 Problem Update

While doing my calculations, I received a transpondence from NASA that in-
formed me that my model was not as accurate as I originally thought. The
equation below is a more accurate model of the situation.

dx

dt
= (

1

x(t)
− 1)

1√
x(t)

(2)

Again, t is in seconds and x(t) represents radial distance in Schwarzschild radii.
Note that this equation is a first-order, non-linear, autonomous, and separable
but can’t be solved analytically. The values for this equation are still only valid
for x(t) ¿ 1 for the same reasons described above.

Equilibrium solutions occur when dx
dt = 0. This occurs for Equation (2)

when x(t)=1 Schwarzschild radius. Again, this makes sense, because everything
should be approaching the event horizon of the black hole. This is shown in the
direction field.
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Direction field of dx/dt = (1/x(t)-1)*1/sqrt(x(t))

Figure 5: Direction Field of dx
dt = ( 1

x(t) − 1) 1√
x(t)

.

Picard’s theorem does not guarantee the existence of a solution when x(t)=0.
However, since our equation is only valid for x(t)¿1, this scenario is not relevant.
By Picard’s theorem, there exists a unique solution on the interval and initial
conditions. dx

dt = f(t, x) is continuous on the interval R = (t, x)|0 < t < 10, 1 < x < 2
and t0 = 0, x0 = 2 ∈ R and fxt, x is continuous R = (t, x)|0 < t < 10, 1 < x < 2
and t0 = 0, x0 = 2 ∈ R as well.

I then received the following two equations from NASA.

dxe

dt
= (

1

xe(t)
− 1)

1√
xe(t)

, xe(0) = 2 (3)

dxy

dt
= C(

1

xy(t)
− 1)

1√
xy(t)

, xy(1) = 2 (4)

Equation (3) represents Larry’s velocity relative to the singularity of the
black hole. Equation (4) represents my velocity relative to Larry’s, and C rep-
resent the ratio of my velocity to Larry’s.

Using these two equations, and using a timestep of 0.1 and setting my initial
velocity to twice that of Larry’s(C=2), I calculated the difference in our positions
as a function of time.
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Figure 6: The graph of the difference of Larry’s distance to the center of the
black hole and my distance to the center of the black hole, dxe

dt −
dxy

dt , C=2.

The time at which I overtake Larry is the point where the graph is equal to
zero. This occurs at t=2 seconds. I determined that a Schwarzschild radius of
1.5 from center of the black hole was the closest I could get to the black hole
and still make it back to the ship safely. Using the initial velocity I chose of
C=2, while I would intersect Larry at 2 seconds, I wouldn’t be able to reach
him before I reached a Schwarzschild radius of 1.5. Therefore, I won’t be able
to save him if I jump at this velocity.
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Figure 7: Larry’s position and my position as a function of time, C=2

Using an initial velocity of 1.2, I determined it was still not possible to reach
Larry in time. We wouldn’t intersect until 5.9 seconds, but I would cross the
threshold of survival of 1.5 Schwarzschild radii before then, at t=2.3 seconds.
This is depicted in the graphs below.
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Figure 8: The graph of the difference of Larry’s distance to the center of the
black hole and my distance to the center of the black hole, dxe

dt −
dxy

dt , C=1.2.
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Figure 9: Larry’s position and my position as a function of time, C=1.2

A summary of my results is shown below.

Time to Overtake(s) Time to 1.5 Schwarzschild Radii(s)
C = 1.2 5.9 2.3
C = 2 2 1.8

Thinking fast, I calculated the minimum velocity I’d need to save Larry from
the black hole. I computationally iterated through values of C, beginning from
2, until there was a point that we intersected before 1.5 Schwarzschild Radii. I
found that a minimum velocity of C = 2.781 is required to save Larry, which I
am nowhere near.

Knowing now that it was possible, I launched out of Icarus using a com-
pressed air canister to propel me with an initial velocity greater than 2.781
Schwarzschild radii per second, saving him at the last possible second.

4 Conclusion

As Larry was shoved off of Icarus towards the black hole, I decided to make an
effort to save him. Using the initial equation(1) I calculated Larry’s distance
from the event horizon as a function of time analytically and by using Euler
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approximations of various step sizes. The smaller the step size, the more ac-
curate the estimation was. After finding that my equations were inaccurate, I
promptly calculated the minimum initial velocity required to save Larry. Even-
tually, I was able to save Larry from certain doom at the very last possible
second.
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5 Appendix

Solving Equation(1) Analytically

dx

dt
= e−x(t)+1 − 1, x(0) = 2

dx

e−x(t)+1 − 1
= dt∫

dx

e−x(t)+1 − 1
=

∫
dt∫

ex(t)dx

e− ex(t)
=

∫
dt

u = e− ex; du = −ex(t)dx

−
∫

du

u
=

∫
dt

−ln(|u|) = t + C

ln(| 1

e− ex(t)
|) = t + C

1

e− ex(t)
= Cet

1

Cet
= e− ex(t)

ex(t) = e− 1

Cet

x(t) = ln(
Cet − 1

Cet
)

Solving for C with initial conditions

2 = ln(
Ce0 − 1

Ce0
) = ln(e− 1

C
)

1

C
= e− e2

C =
1

e− e2

Final Analytical Solution to Equation(1)

x(t) = ln(e− e− e2

et
)
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Derivative of
dx

dt
= (

1

x(t)
− 1)

1√
x(t)

f(x, t) = x−3/2 − x−1/2

fx(x, t) =
−3x−5/2

2
+

x−3/2

2

Derivative of f(x, t) = e−x+1 − 1

fx(x, t) = −e−x−1
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