Modeling Plant Branching Structure with L-Systems
CSCI 4314/5314 Final Project

Allison Liu and Anna McTigue
Spring 2022

Abstract

Plants exhibit diverse branching structures, and generating computational models of these structures
is useful to understand plant growth, improve plant identification, and create better computer renderings
of plants. It is difficult to model branching structure with traditional statistical methods, so a different
approach has been developed that is compatible with the self-similar fractal structure displayed by many
plant species. Lindemeyer Systems (L-Systems) were developed to model plant-like structures, and have
been improved to address particular biological conditions. In our project, we used L-Systems to model
the branching structure of specific plant species. We first generated specific structures using a series of
L-System instructions, then we characterized how several parameters alter monopodial tree structure,
and lastly we generated three dimensional models of monopodial and ternary trees of specific species.

1 Introduction

From nature, we are able to observe the incredible diversity of structures that plants take on. Understand-
ing and quantifying the complex branching structure of plants could help us to develop better computer
renderings of trees [1], improve models for plant growth, more accurately identify plants, and even calculate
available biomass [2]. Additionally, modeling the morphology plants is potentially useful for plant identifica-
tion and could yield key insights into how and why plants develop into the fractal-like shapes. However, the
organic structure of plants makes them rather difficult and cumbersome to model using traditional geometric
or statistical techniques.

Figure 1: Natural fractal tree branching

Due to the self-similar structure of plants, the property that they look roughly the same at any scale, it
makes sense to use a recursive or iterative computational model to model the branching structures observed
in the natural world. We use Lindenmayer systems (L-systems), which are a formal system to provide a
mathematical description of plant growth using strings of characters that represent instructions and are



then recursively transformed into new instructions using a set of rules. L-systems were developed by a
theoretical biologist named Aristid Lindenmayer in 1968 to describe the behavior of plant cells and model
the growth processes of many biological organisms [3]. In this project, we use L-systems to characterize and
quantitatively describe the branching structure of specific species of plants. We first investigate and detail
the effects of each of the parameters. Then, we identify some diverse plant structures and modify parameters
and instructions in the L-system model to generate outputs with similar branching structures.

2 Background

Because many trees appear very similar to human eye, we require quantitative methods for characterizing
the chaotic appearance of tree structures in order to identify them. Recognizing the growth pattern and the
branching patterns of trees can be very helpful for identifying different species of trees, modeling the amount
of carbon dioxide that a tree is able to exchange with its environment, and modeling the process of water
transpiring through a tree [2]. Leonardo DaVinci wrote that ”all the branches of a tree at every stage of its
height when put together are equal in thickness to the trunk” in the 15th century, which turned out to be
true for many branching patterns found in nature as well as many self-similar structures [4] and the reasons
for why have been investigated [5].

Since Aristid Lindenmayer first used L-systems to model the growth of plants and published The Algo-
rithmic Beauty of Plants [6] a lot of progress towards creating a functional model has been made. Notably,
Honda investigated branching patterns of real trees by tuning numerical parameters [7]. Aono and Kunii
were the first to apply L-systems to the generation of botanical plants [8]. Murray et al. have used fractal
analysis to monitor tree health by measuring the structural condition of trees [9]. In this project, we will
gain a deep understanding of these previous works and build on them by creating models of trees and plant
species of our own.

3 Methods

3.1 L-Systems

Structural patterns can be plotted in several ways. Most commonly, we use a series of points connected
by lines to create a visual representation of a pattern. For L-Systems, we consider a ”turtle” whose path
is described as a starting point and a series of instructions like "Move forward, left, turn degrees, stop”
and have it trace a line behind the path that it traveled. This series of instructions can be represented
symbolically using a series of strings. A very abbreviated list of example commands used in L-Systems are
listed in Table 1. There are many more rather standardized commands including for moving half a step
forward, adjusting the pitch, dividing the angle change scale, etc [10].

String Representation Description of Action
F move forward one unit and trace the path with a line
f move forward but don’t draw anything
- rotate counter-clockwise but don’t move
+ rotate clockwise but don’t move
[ stay still but remember it’s current location and angle
] return to the last remembered location, then forget about it

Table 1: Simple commands used in an L-System
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Figure 2: A simple branching pattern

For example, Fig 2 shows a very simple branching pattern, which appears if we give the turtle the
instructions F' — F[—F|[+F].

Next, we can iterate this pattern to create more complex fractals. After iterating 2 times using the same
string of instructions as before, we get the following pattern:

Iteration number n ‘ Instruction String
0 F
1 F[-F|[+F]

2 FI=F][+F|[=F[=F|[+ F] [+ F[-F][+F]]

We get the following visual in Fig 3 if we simply iterate this — F[—F][+F] mapping n = 4 times.
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Figure 3: Simple branching pattern iterated 4 times

The tree in Fig 3 looks pretty boring. Now, we introduce some asymmetry to string of instructions and
iterate it a few more times (Fig 4(a)). To make it appear less bush-like, we introduce an additional mapping
F — FF, which has the effect of making lines closer to the root appear longer (4(b)).

As an example, we have



Iteration number n | Instruction String
0 A
1 F+A
2 F+F+ A
3 F+F+F+A
4 F+F+F+F+A

without the F' — F'F transformation. And we have

Iteration number n Instruction String
0 A
1 F+ A
2 FF+F+ A
3 FFFF+FF+F+ A
4 FFFFFFFF+FFFF+ FF+F+ A

with the F' — F'F transformation.

@ @ ¢ 50 &0 0 20 0 » @ @

(a) Adding asymmetry (b) Making the earlier branches appear longer

Figure 4: The effect of changing instruction strings and adding various transformations to our turtle’s path

There are infinitely more modifications that can be made to these L-System commands that can result
in plant like structures.

3.2 Three Dimensional Models and Parameterization

While the simpler L-system models described above provide useful exhibitions of branching structure, it is
useful to expand these models to three dimensions. Introducing the Z axis allows for more complex structures
that are more biologically relevant.

Additionally, it is useful to incorporate parameters that alter specific aspects of the L-system models
to make them more manipulable. We aimed to include parameters to manipulate a variety of structural
aspects of the model including contraction ratio of the trunk and branches, branching angle of the trunk and
lateral axes, the divergence angle, and the width decrease rate. This allows for more precise manipulation
of trunk/branch thickness, angle of branching, and overall structure. [10]

3.3 Monopodial vs Ternary Trees

We also aimed to manipulate a few different types of tree structures. We investigated the structure of
monopodial and ternary trees as described in Honda’s original paper [7].

Monopodial trees are composed of a single, central axis (trunk) and branches that project from that
central point. Ternary trees are composed of a central axis split into three sections, each of which project
their own branches. These two structures can be represented by the following set of rules as described in
Houdini Kitchen [10].



Monopodial Tree Rules
e Premise: A(1,10)
e Rule 1: A(l,w) = F(l,w)[(c)B(l *e,w*h)]/(m)A(l «b,w * h)

e Rule 2: B(l,w) = F(l,w)[—(d)$C(I * e, w * h)]C(l * b, w * h)

)
e Rule 3: C(l,w) = F(l,w)[+(d)$B(l * e,w * h)|B(l * b, w * h)
Ternary Tree Rules
e Premise: F(0.5,1)A
e Rule 1: A=TF(0.5,1)[(c)F(0.5,1)A]/(b)[(c)F(0.5,1)A]/(e)[(c)F(0.5,1) A]
e Rule 2: F(l,w)=F(l*d,wxh)

4 Results
4.1 Modeling Specific Plants with Simple L-Systems

To begin investigating plant branching structures, we used a turtle to graph L-systems and capture particular
aspects of a few specific plant structures.

4.1.1 Cow Parsley

The first plant that we modeled was cow parsley. This plant is characterized by a long stem that branches
about a third of the way up the plant [11], and branches more frequently toward the tip of the plant. We
were able to capture the location and frequency of branches in our model (Fig. 5). Our model is represented
by the instructions: FF —-FF,A—-FF[+A]F[-A]+A.

Cow Parsley
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Figure 5: L-System model of cow parsley.

4.1.2 Indian Grass

Next, we looked at Indian Grass, a species with a very different branching behavior [12]. In this model, we
were able to capture the general asymmetrical shape of the grass (Fig. 6), and the long stem that ascends



into a more highly branched structure at the tips of each blade. This model is represented by the L-system
instructions: F' -FF,A—F-[[A]4+A]+F[+FA]-A.

Indian Grass

 FFF
A — F-[[A[-AJ+F[+FA]-A

Figure 6: L-System model of Indian grass.

4.1.3 Birch Tree

Lastly, we aimed to create a model for a birch tree. This tree is characterized by one long central trunk, and
asymmetrical branches coming off that center trunk. Each of the branches then divide into smaller branches,
with the smallest and most complex branches occurring at the ends. We were able to capture this general
structure (Fig. 7), and our model can be represented by the L-system instructions: F' -FF,A—FF[++A][-
AJFA.

Birch Tree

 F—FF
A — FF[+A][-AJFA

Figure 7: L-System model of a birch tree.

4.2 Parameter Characterization

To better understand how the parameters implemented affect overall tree structure, we manipulated each
parameter individually. Figure 8 includes detailed descriptions of how each parameter impacts tree structure.
Once these parameters had been characterized, they were useful to manipulate the resulting structure to be
more similar to specific plant species (section 4.3: Modeling Specific Plant Species).



Parameter Characterization of Monopodial Trees

Parameters Result Observations
r1=0.9 # contraction ratio trunk e Fairly consistent branching
12=0.6 # contraction ratio structure

branches | =
a0=pi/4 # branching angle trunk /

¢ Thickness decreases toward the
top/ends of the tree

a2=pi/4 # branching angle

lateral axes

d=137.5*pi/180 # divergence

angle

wr=0.707 # width decrease rate

F Result Observations P Result Observations

r1=0.6 # contraction ratio trunk « A lower contraction trunk 11=0.9 # contraction ratio trunk A smaller lateral axis

r2=0.6 i contraction ratio ratio appears to reduce 12=0.6 # contraction ratio branches branching angle means that the
branches branching a bit and increase || a0=pi/4 # branching angle trunk branches separate from each

a0=pi/4 # branching angle trunk
a2=pi/4 # branching angle lateral
axes

d=137.5*pi/180 # divergence
angle

wr=0.707 # width decrease rate

the relative thickness and
length of the branches

a2=pi/6 # branching angle lateral
axes

d=137.5*pi/180 # divergence angle
wr=0.707 # width decrease rat

other less severely. It appears
as though there is low
repellence between branches,
and they therefore stay closer
together.

r1=0.9 # contraction ratio trunk
r2=0.3 # contraction ratio
branches

a0=pi/4 # branching angle trunk
a2=pi/4 # branching angle lateral
axes

d=137.5*pi/180 # divergence
angle

wr=0.707 # width decrease rate

* A lower contraction branch
ratio appears to make the
branches less spread out,
and more straight compared
to the example tree.

r1=0.9 i contraction ratio trunk
r2=0.6 # contraction ratio
branches

al=pi/2 # branching angle trunk
a2=pi/4 # branching angle lateral
axes

d=137.5*pi/180 # divergence
angle

wr=0.707 # width decrease rate

A larger branching trunk
angle results in branches
that look heavier, and come
away from the trunk at a
more severe angle.

11=0.9 # contraction ratio trunk
12=0.6 # contraction ratio branches
a0=p1/4 # branching angle trunk
a2=pi/4 # branching angle lateral
axes

d=110*pi/180# divergence angle
wr=0.707 # width decrease rate

A lower divergence angle
appears to decrease the branch
directional divergence from the
trunk. For instance, the lower
right branch is closer to the
rest of the tree than when
under the example conditions.

r1=0.9 # contraction ratio trunk
12=0.6 # contraction ratio branches
a0=pi/4 # branching angle trunk
a2=pi/4 # branching angle lateral
axes

d=165*pi/180# divergence angle
wr=0.707 # width decrease rate

A higher divergence angle
appears to increase the branch
directional divergence from the
trunk. For instance, the lower
right branch is further from the
rest of the tree than when
under the example conditions.

r1=0.9 # contraction ratio trunk
r2=0.6 # contraction ratio
branches

al0=pi/6 # branching angle trunk
a2=pi/4 # branching angle lateral

axes

d=137.5*pi/180 # divergence
angle

wr=0.707 # width decrease rate

A smaller branching trunk
angle results in branches
that look more springy and
upward facing. They come
away from the trunk at a less
severe angle.

r1=0.9 # contraction ratio trunk
r2=0.6 # contraction ratio
branches

a0=pi/4 # branching angle trunk
a2=pi/2 # branching angle lateral
axes

d=137.5*pi/180 # divergence
angle

wr=0.707 # width decrease rate

* A larger lateral axis
branching angle means that
the branches separate from
cach other at more severe
angles. It appears as though
there is strong repellence
between the branches and
they are optimizing distance.

11=0.9 # contraction ratio trunk
12=0.6 # contraction ratio branches
a0=pi/4 # branching angle trunk
a2=pi/4 # branching angle lateral
axes

d=137.5*pi/180 # divergence angle
wr=0.5 # width decrease rate

Decreasing the width decrease
rate results in a faster decrease
in thickness of the branches as
the ends of the tree are
approached.

11=0.9 # contraction ratio trunk
r2=0.6 # contraction ratio branches
a0=pi/4 # branching angle trunk
a2=pi/4 # branching angle lateral
axes

d=137.5%pi/180 # divergence angle
wr=0.9 # width decrease rate

Increasing the width decrease
rate results in slower decrease
in thickness of the branches as
the ends of the tree are
approached.

Figure 8: Parameters of the monopodial tree model were characterized. These consisted of the contraction
ratio of the trunk and branches, the branching angle of the trunk and lateral axes, the divergence angle, and
the width decrease rate.

The above example is done for monopodial trees, but a similar strategy could be employed to investigate
parameter effects on structure for other tree types, including ternary trees.

4.3 Modeling Specific Plant Species

Now that we have established how different parameters effect the overall branching structure of the tree, we
were equipped to model specific species of trees in three dimensions. To expand the types of structures that
we can model, we used both monopodial and ternary trees (see section 3.3: Monopodial vs Ternary Trees).



4.3.1 Acacia Tree

The first tree that we modeled was the Acacia Tree, which has a particularly distinctive shape. It branches
fairly early down down in the trunk, and forms this evenly spaced umbrella pattern of branches. We were
able to capture the dispersed branching features in a monopodial model (Fig. 9), with the parameters listed
below:

e Contraction ratio trunk: r;1 = 0.7

e Contraction ratio branches: ro = 0.7

Branching angle trunk: ag = pi/6

Branching angle lateral axes: as = pi/4

e Divergence angle: d = 137.5 x pi/180

Width decrease rate: w, = 0.707

Iterations: N =7

Acacia

Charles Sharp

Figure 9: Acacia tree model using monopodial L-systems.

One feature of the tree we were not able to capture in our model is the roundness of the branches. In the
image by Sharp 2004 (Fig. 9) [13], one can observe the curvature of the branches. It would be interesting to
try to build a model in the future that can include this feature.

4.3.2 Weeping Willow

We next created a model for the weeping willow using a ternary tree. This tree is characterized by a split
around halfway up the tree, and long droopy branches sourced from the middle and upper end of the trunk
[14]. We were able to represent these features in our model (Fig. 10). We included two different trees that
result from the same set of parameters, one with 6 iterations and the other with 7 iterations. This shows
that more iterations result in a more highly branched structure, and this can be altered to represent the
respective tree being modeled. The parameters used to create this model are as listed:

e Divergence angle 1: d1 = 94.74 % pi/180
e Divergence angle 2: d2 = 132.63 * pi/180
e Branching angle: a = 18.95 x pi/180

e Elongation rate: Ir = 1.15



e Width increase rate: vr =1

e Iterations: N =6, N =7

Weeping Willow

Figure 10: Willow tree model using ternary L-systems.

5 Conclusion

In this project, we used parameterized L-systems to model specific species of plants. We have shown how
simple L-system instructions can be used to generate complex structures, and capture particular branching
features. Additionally, we have characterized the parameters that can alter monopodial tree structures with
the same set of rules. We also altered parameters on monopodial and ternary trees to produce three dimen-
sional models of specific tree species. The results in this project as a whole lead to a better understanding of
how to computationally represent particular features of plant branching structures. This is potentially useful
to improve our understanding of plant growth and development, to develop better computer renderings of
plants, and to improve plant identification. L-systems are an excellent strategy to model plant structures,
and there is much that can still be done to improve their accuracy and usefulness in the future.

6 Future Work

To continue this project, we would be interested in integrating artificial neural networks to evaluate the
generation of the plants we have created. This would be a good way to determine the accuracy and realism
of the plants that have been generated. Furthermore, we would be excited to implement a General Adver-
sarial Network (GAN) to create mappings from our generated structure models into realistic photos of their
respective plants. This could be a good way to create more evaluation data for plant identification tasks and
for training plant identification models.



Code

The code we used for this project can be found here: https://github.com/allisonliu/tree-modeling.
It was based on models from these repositories:

e https://github.com/ThomasLENNE/L-system

e https://github.com/paulgb/bitaesthetics/blob/master/notebooks/Fractal’20Generation)20with,
20L-Systems.ipynb

e https://github.com/ambron60/1-system-drawing

Contributions

Anna:
e characterizing parameters of monopodial trees
e using the code to generate models of specific tree species
e report: abstract, results, background, conclusion
Allison:
e gathering and implementing Python code
e background research on L-systems

e report: introduction, background, methods, future work
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