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The ultraviolet (UV) and extreme ultraviolet (EUV) images taken by the Atmospheric Imag-

ing Assembly (AIA) onboard NASA’s Solar Dynamics Observatory (SDO) image different layers

of the solar atmosphere and change more dynamically than magnetograms, which are the primary

data source used for solar flare prediction. There is a need to understand the extent to which AIA

image data can be used to enhance operational flare prediction methods. However, in order to

do so, we must first be able to identify flaring events within the spatiotemporal AIA image data.

Furthermore, we aim to understand patterns in solar flare precursor activity (known as microflares)

leading up to large flare events of magnitude M1 or greater (≥ 10−5 W/m2). Specifically, we use

singular value decompositions (SVDs) of summed solar active region patches (SHARPs) taken by

AIA to decompose the data into spatial and temporal modes, generating one-dimensional vectors

which can be treated as time series signals. Our results show that there exist(s): (i) an underlying

isotropic nature to the spatiotemporal data, (ii) peaks in the resulting SVD signals which align with

flares defined in existing flare catalogs, and (iii) more precursor activity for M1–M4 and M5–M9

flares than for X flares.



Dedication

This thesis is dedicated to my parents, whose sacrifices gave me everything.

To my mom，Brenda 何月分，for her strength and endless support.

To my dad，Bruce 劉勛宇, who is still alive in the memories of everyone he taught about living.



iv

Acknowledgements

I am so grateful for all that I have learned in the process of writing this thesis. It would not

have been possible without the help of many people. First, thank you to Prof. Elizabeth Bradley

for her generous support of this research, without whom I would not have had the opportunity

to pursue this degree. Dr. Natasha Flyer has been the best advisor I could have asked for, who

always approaches research with patience, excitement, and creativity. It is rare to have an advisor

who cares as much about her students as she does her work. Both of these women have been role

models to me, pursuing research with dedication and rigor. I would also like to thank Dr. Tom

Berger and Dr. Kiera van der Sande for all of the insightful discussions about the Sun and group

meetings that always brightened my day. My previous research mentors Dr. David Couch and Dr.

Wendy Carande continue to inspire me to solve problems in science and taught me invaluable skills.

This experience would not have been nearly as enjoyable without the incredible community

of people I have around me. I am especially thankful to Callum Douglass, Alex Boehm, Anna

McTigue, Nina Hooper, Justin Hall, Nate Holland, and Hannah Martin for their feedback, providing

me with new perspectives, and filling my life with adventure. My dad, Bruce Liu, never got to see

me complete this degree, but remains one of my biggest inspirations. He encouraged me to chase

my dreams, while never letting me forget that how I treat others is most important. People often

liken me to my mom, Brenda He. It is the greatest compliment I could get. She is endlessly selfless,

resilient, and hardworking, and has always been my biggest supporter. My brother Curtis reminds

me to enjoy the little moments. Finally, I could not have done this without Kyle Fridberg and his

unwavering encouragement during the most joyful successes and the difficult failures.



Contents

Chapter

1 Introduction 1

2 Background Literature 4

2.1 Techniques for Event Detection in Spatiotemporal Data . . . . . . . . . . . . . . . . 4

2.2 Relating Precursor Activity to Solar Flare Events . . . . . . . . . . . . . . . . . . . . 6

3 Data 8

3.1 Time Series Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Sample Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Methodology 13

4.1 Dimension Reduction of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Results 22

5.1 Invariance of Results to Summing Rows or Summing Columns . . . . . . . . . . . . . 22

5.2 Consistency of Singular Vector “Events” with AIA Flare Catalog . . . . . . . . . . . 23

5.3 Correlating Precursor Activity to Magnitude of Solar Flare Event . . . . . . . . . . . 31

6 Conclusions and Future Work 39

Bibliography 41



vi

Tables

Table

3.1 Classification of solar flares by peak flux. . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Regions of the solar atmosphere observable by six AIA wavelength channels. . . . . . 10

3.3 Total flare counts for Solar Cycle 24 by flare class. . . . . . . . . . . . . . . . . . . . 11

3.4 Sample counts for X, M5–M9, and M1–M4 flares in Solar Cycle 24. . . . . . . . . . . 12

5.1 A summary of what we generally observe from each singular vector across SHARPs

with large flares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



Figures

Figure

3.1 A plot of the number of solar flares by class that have occurred from Jan 1997 - Apr

2023 (present). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 A plot of AIA images in 5 wavelengths (94 Å, 131 Å, 171 Å, 193 Å, 304 Å) and an HMI

magnetogram for SHARP 7115. The images at this timestep occur approximately 8

hrs and 36 mins before an M2.4 flare and 5 hrs and 45 mins after an M2.5 flare. . . . 11

4.1 An example of four AIA images taken using a wavelength of 131 Å for SHARP 4698

with a cadence of 1 hr. An X1 flare occurs 4 minutes after the image in (c). . . . . . 14

4.2 The 1D vectors created by summing the images in Figure 4.1 across rows (left) or

down columns (right), and then cropping to obtain vectors of length 256. . . . . . . 15

4.3 A surface plot of the matrix produced by summed images in AIA 131 Å for SHARP

4698. At a 12 min cadence, every 10 timesteps represents 2 hrs. . . . . . . . . . . . . 16

4.4 The series of data transformations taken to extract spatial and temporal modes from

a time series of AIA images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 The largest 25 singular values obtained from the SVD of the summed SHARP 4698

matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6 The first seven singular vectors of the U and V matrices (i.e. the columns of U and

V ) obtained from taking the SVD of the summed SHARP 4698 matrix (summed

across rows) in Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



viii

5.1 Singular vector 2, v2, of the V matrix resulting from taking the SVD of the summed

SHARP matrices for SHARPs 1449, 4698, 5298, and 7115. . . . . . . . . . . . . . . . 24

5.2 Singular vector 5, v5, of the V matrix resulting from taking the SVD of the summed

SHARP matrices for SHARPs 1449, 4698, 5298, and 7115. . . . . . . . . . . . . . . . 25

5.3 Singular vector 9, v9, of the V matrix resulting from taking the SVD of the summed

SHARP matrices for SHARPs 1449, 4698, 5298, and 7115. . . . . . . . . . . . . . . . 25

5.4 A plot of singular vectors 1–9 of the V matrix for SHARP 4698 in AIA 131 Å.

The first 80 hrs of data for the SHARP are shown, with every 10 timesteps on the

time-axis representing 2 hrs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 A plot of singular vectors 1–9 of the V matrix for SHARP 1449 in AIA 94 Å. The first

60 hrs of data for the SHARP are shown, with every 10 timesteps on the time-axis

representing 2 hrs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.6 A plot of singular vectors 1–9 of the V matrix for SHARP 4698 in AIA 131 Å. The

singular vectors are cropped to show the 150–200th timesteps, which represents a

total of 10 hrs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.7 Examples of singular vector 4 samples (in absolute value) 12 hrs before a solar flare

of interest. The 12 hr samples are represented by the blue line, while the flare is

represented by the black line. Note that the y-axis varies across the plots for each

SHARP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.8 Plots of the 75th and 25th percentiles of sample amplitudes separated by flare class. 33

5.9 A plot of all of the 104 samples from singular vectors 1–9. Samples 1–20 are X flare

precursor signals, samples 21–46 are M5–M9 flare precursor signals, and samples

47–104 are M1–M4 flare precursor signals. . . . . . . . . . . . . . . . . . . . . . . . . 34

5.10 Examples of samples in different singular vectors for an X1.5 flare in SHARP 5298.

Figure 5.7a shows the plot for the same flare in singular vector 4. The 12 hr samples

are represented by the blue line, while the flare is represented by the black line. . . . 36

5.11 Bar plots of 12 hr samples by flare class. . . . . . . . . . . . . . . . . . . . . . . . . . 38



Chapter 1

Introduction

The problem of detecting anomalous events in spatiotemporal data commonly arises in geo-

physical datasets. It is necessary to reliably forecast natural hazards to issue warnings to the public

and prevent structural damage and loss of human life. In 2022 alone, 165 billion dollars in damage

was caused by 18 different extreme weather events in the United States [49]. As such, there is

extensive literature related to improving the prediction of events like earthquakes [46], avalanches

[13], floods [42], volcanoes [44], and solar flares [5]. Detecting these natural phenomena remains

difficult due to the complexity of the underlying causes and infrequent occurrence. The relative

rarity of these events leads to imbalanced datasets, making detection and prediction challenging.

Furthermore, because these natural events change dynamically on a quick timescale relative to the

recorded data history, it is complicated to track and identify them in the spatiotemporal datasets.

Within the field of heliophysics, we consider the problem of solar flare detection. Solar flares

are explosive bursts of electromagnetic radiation originating from the atmosphere of the Sun and

can last from minutes to several hours [48]. Flares are highly correlated with coronal mass ejections

[20] and geomagnetic storms which can cause disruptions in the Earth’s magnetosphere [31][56].

Such changes in the magnetic field have the potential to damage critical infrastructure like the power

grid [34] and satellite/radio communications [36] [57]. Additionally, radiation associated with solar

flares is harmful to astronauts in space, who are not protected by the Earth’s atmosphere [50]. Since

even a 30 minute warning can prevent potential damage to infrastructure, it is critical to predict

solar flare events in real-time. Due to the impacts of solar flares on human activity, detecting solar
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flare events accurately and distinguishing between weak events and strong events that can cause

damage is of great interest.

Onboard NASA’s Solar Dynamic Observatory (SDO), which has been operational since 2010,

there are two instruments that capture solar images at regular time intervals. The Helioseismic

Magnetic Imager (HMI) captures full-disk solar magnetograms, or images of the magnetic field

of the Sun. The Atmospheric Imaging Assembly (AIA) collects full-disk images of the Sun in

multiple ultraviolet (UV) and extreme ultraviolet (EUV) wavelengths. The solar structure changes

more dynamically and on a much shorter timescale in the UV/EUV wavelengths compared to the

magnetic field, making it desirable as a direct source for identifying flaring events. Flaring occurs

in regions of the Sun with strong magnetic fields, called active regions (ARs) which are identified

using HMI magnetograms. In AIA images, flares appear in ARs as bright flashes of light. For this

study, we consider time series of AIA images, which provides us with a three-dimensional (2D in

space plus 1D in time) spatiotemporal datacube of solar events.

Solar flare activity varies greatly with the 11-year solar cycle. At the peak of a solar cycle,

up to several solar flares per day can occur. At solar minimum, we observe fewer than one per

week [15]. However, while solar flares occur relatively often, events which have the potential to

affect human operations on Earth occur much more infrequently (only 750 flares in Solar Cycle 24

2008-2019). Compounded with the fact that there are often gaps in sensor data, and that flares

captured while on the limb of the Sun may not be directly comparable to flares on the face because

of intensity differences in the images, the lack of large flaring instances presents a problem for both

solar flare prediction and detection. There are simply not enough events to identify conclusive

patterns in the data leading up to an event. The explosive events are also difficult to locate within

an AIA image due to the constant background activity on the surface of the Sun.

The most extensive catalog of solar flares is captured by the Geostationary Operational

Environmental Satellites (GOES) which are a series of satellites monitoring the Earth and operated

by the National Oceanic and Atmospheric Administration (NOAA). Solar flares are classified by
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their peak X-ray flux as measured by GOES. The GOES X-ray flare catalog1 contains a detailed

history of significant flares dating back to 1975, but defining flares using scalar flux values results

in the loss of spatial information. Additionally, the catalog is missing AR labels for many of the

flares and does not contain any entries describing small events that could act as precursor signals.

It has been well-established that large flare events are often preceded by precursor flares [51].

Precursor flares can range in size from large flares to ones much smaller than the flare of interest,

which are called microflares. We define “large” flares as flares with a measured peak X-ray flux

greater than 5 × 10−5 W/m2. This is the baseline for NOAA’s Space Weather Prediction Center

(SWPC) to issue an alert to the public.2 Studies have demonstrated that the occurrence of a flare

increases the likelihood of another event [21]. Thus, the first major event in a series is the most

important to predict. This thesis aims to study the time period leading up to large solar

flares and identify patterns in microflares during this time. Techniques from this study

have the potential to be used for detecting rare events in other spatiotemporal datasets.

In this work, we introduce the concept of using singular value decompositions (SVDs) for

spatiotemporal event detection. In Chapter 2, we present relevant literature for spatiotemporal

event detection, focusing on solar flare events. Chapter 3 describes the EUV/UV solar image data

utilized for this study. In Chapter 4, we discuss methodology used for identifying and understanding

events preceding large solar flares. We first transform the solar image data into time series by

summing images into 1D vectors to create a matrix with rows representing space and columns

representing time. We then perform an SVD on the resulting matrix to decompose it into spatial

and temporal components. Chapter 5 describes results obtained from analysis of the singular vector

signals. Finally, we summarize our results and discuss future work in Chapter 6.

1 https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/xrs/
2 https://www.swpc.noaa.gov/noaa-scales-explanation



Chapter 2

Background Literature

The following section reviews some commonplace mathematical and computational tech-

niques in the literature for identifying events in spatiotemporal data. The section concludes with a

discussion of the literature pertaining to the relationship between precursor activity and the solar

flare events of interest.

2.1 Techniques for Event Detection in Spatiotemporal Data

Methods for spatiotemporal event detection have been extensively studied in image process-

ing, statistics, and machine learning [58]. Upon identification of target events, pattern recognition

can be used to extrapolate information and predict future events.

Statistical techniques: These techniques use statistically significant patterns in the data

to make conclusions about features such as mean pixel value, time to event, and event location.

Earthquake precursor identification has involved analyzing precursor signals in seismological data

[32] and shares many similarities with the task of solar flare identification. In one study, the

distributions of various properties of earthquake precursor signals (spatial extent, time, duration,

amplitude) were analyzed and used to correlate precursor activity with earthquake magnitude

[14]. They determined that precursor activity increased closer to the earthquake epicenter. An-

other study derived features from solar magnetograms and used discriminant analysis, a statistical

technique that uses probability density functions to group observations, to predict solar flares [6].

Wheatland estimated the probability of a solar flare using a Bayesian approach to fit a probability
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distribution based on flare statistics [54]. While computationally very efficient, statistical features

are often human-determined and do not provide an adequate description of spatial information

present in data. Statistical techniques also assume that the sample of data is representative of the

population and tend to be more useful with large datasets [19].

Mathematical/Computational techniques: In time-frequency analysis, the factorization of

spatiotemporal data into spatial and temporal modes is known as the blind source separation

(BSS) problem. Given a signal that proceeds in space and time, the goal is to recover the underly-

ing signals which compose the data. A large family of methods including the Fourier transform and

the singular value decomposition (SVD) exist for solving the BSS problem [29] by decomposing the

data into a set of components. In the context of geophysical signal processing, diffracted seismic

signals can be used to identify regions of geologic interest like faults and fracture zones. As these

diffracted signals are weaker, they can be masked by other stronger signals. SVDs have been used

to improve the accuracy of geologically heterogeneous zones by extracting these diffracted signals

from waves [47]. BSS methods have also been used to improve event detection. For example, it

is possible to detect cyber-attacks on water distribution systems by separating time series using

fast Independent Component Analysis (fast ICA) related to water tank pressure into independent

components and analyzing them for abrupt changes using a statistical control algorithm [10].

Object-based image processing methods rely largely on background subtraction to detect and

track objects as they move through image frames. For example, in [40] the authors track detected

objects over sequences of images by matching regions and inferring their trajectories over time.

A summary of background subtraction-based object detection methods is presented in [33]. In

contrast, other techniques leverage topological properties (e.g. connectivity, compactness, shape)

which are not considered in object-based methods [11]. For solar flare prediction, topological

features perform equally as well as parameter-based features [18]. Unfortunately, many object

detection methods still rely on human-identified regions of interest [9]. Image-based event detection

remains difficult in geophysical data due to the ill-defined boundaries of naturally-shaped objects

such as tornadoes and bodies of water [35].
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Machine learning techniques: Machine learning methods for event detection can be di-

vided into two subcategories: supervised and unsupervised. Statistical and image processing tech-

niques provide useful training features for machine learning models. Supervised methods require

data with labels to produce models. It is often costly and time intensive to create labeled datasets.

However, supervised models generally produce more accurate results compared to unsupervised

ones. Examples related to event detection include the development of a predictive modeling frame-

work for identifying forest fires in urban areas using poorly labeled satellite data [41] and the use of

generative adversarial networks to identify flood events from images [45]. An Extremely Random-

ized Trees regression model was used to identify solar flares from solar images [52]. Unsupervised

methods do not require labeled datasets, instead relying on unspecified properties within the data

to find inherent patterns. One study used k-means clustering to classify volcanic events from

seismic signals [30]. Another used genetic algorithms, a class of biologically-inspired optimization

techniques, for detecting water system contamination [2]. Solar flare precursor signatures were

identified using observed changes in spectral profiles of the Sun and k-means clustering [55].

2.2 Relating Precursor Activity to Solar Flare Events

There is a considerable amount of literature showing that several solar flares often occur

close together in time [38] and that large solar flares are commonly preceded by smaller precursor

flares, known as microflares [28]. A comprehensive flare precursor study postulates that many small

precursors are indicative of regions of instability which may lead to flares [51]. However, because the

mechanism behind flaring is not well understood, examining flare precursor data provides valuable

insight into why and how solar flares occur.

There are many studies which identify a few flaring events and analyze the time period leading

up those events in depth (Wang et al. [53], Harra et al. [27], Farnik et al. [22]). These case studies

are helpful for understanding the relationship between flares and precursors as well as providing

insight into flare onset mechanisms. However, it is not possible to generalize results across many

solar flare occurrences as they only examine one or two flare instances.
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Alternatively, many studies statistically analyze solar changes in the time period leading up

to flare events (see [26] for a review). From a database of approximately 40,000 magnetograms,

Falconer et al. found evidence that prior flaring rate of an active region statistically impacts the

likelihood of a large flare occurring [21]. Using a sample of 32 flares from October 1993 - October

1994, Farnik and Savy classified the spatial relationship between flaring events based on precursor

information from the Yokoh satellite [23]. It has also been shown that flares of different sizes have

different observed characteristics [17]. By studying the spatiotemporal flare distribution 24 hrs

before large flares, Gyenge et al. showed that there are temporal differences in precursor activity

depending on the strength of the flare. Flaring starts earlier in stronger flares and later in weaker

ones. Additionally, in the 6 hrs immediately preceding a flare of interest, precursor flares follow a

log-normal distribution [25]. However, over long periods of time, flaring events follow a power-law

distribution independent of solar cycle [1], [16], [39], [3]. While these studies provide insight into

patterns in the data for a given time period leading up to flares, they cannot establish explanations

for causal relationships between flares and precursors. Thus, the literature to date remains very

limited.
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Data

The images used in this solar flare study are full-disk UV and EUV images of the Sun taken

by AIA. Solar flares are defined using the peak flux of soft X-rays (1-8 Å) in watts per square meter

(W/m2) as measured by GOES. Flares are classified on a logarithmic scale with the letters A, B,

C, M, and X as in Table 3.1. For example, an M7 flare has a flux of 7× 10−5 W/m2. As shown in

Figure 3.1, stronger flares (M and X) occur less frequently.

Class Avg Peak Flux (W/m2)

A < 10−7

B 10−7 ≤ B < 10−6

C 10−6 ≤ C < 10−5

M 10−5 ≤ M < 10−4

X ≥ 10−4

Table 3.1: Classification of solar flares by peak flux.

Source: https://www.swpc.noaa.gov/phenomena/solar-flares-radio-blackouts

While the GOES X-ray flare catalog remains the most extensive catalog of solar flares to date,

the catalog is missing solar AR labels for many C class and smaller microflares. Due to the lack of

spatial information for flare precursors, the GOES catalog is not ideal for this study. In addition to

the GOES X-ray flare catalog, another catalog of flaring events using solar images captured in UV

and EUV wavelengths has recently been created. The AIA flare catalog captures an overlap of 85%

M/X flaring events with the GOES flare catalog, labels ARs of C flares, and identifies previously

unrecorded flares [52]. We verify our identification of flares with those from this new AIA catalog.



9

Figure 3.1: A plot of the number of solar flares by class that have occurred from Jan 1997 - Apr
2023 (present).



10

3.1 Time Series Images

AIA collects images of the Sun in wavelengths ranging from 94 Å to 4500 Å at a 12 second

cadence. Many studies use cutouts of active regions of the Sun, known as Spaceweather HMI Active

Region Patches (SHARPs) [8]. For this study, we use active region cutouts derived from the original

AIA images that are congruent with the magnetogram SHARPs. These cutouts are constructed

via the procedure given in [52] using the aiapy Python library [7]. We refer to these AIA cutouts

as “AIA SHARPs”. While most studies use HMI magnetograms, structures in AIA images change

more dramatically and on a shorter time scale. Images of the Sun are taken using different AIA

wavelengths, which capture emissions from different regions of the solar atmosphere (Table 3.2).

Although it is common in the literature to focus on the following six wavelength channels (94 Å,

131 Å, 171 Å, 193 Å, 304 Å, 1600 Å), we concentrate on the 131 Å and 94 Å channels. It was

shown that features derived from these two channels played the most important role in predicting

AIA flare magnitudes [52]. Figure 3.2 shows an example of an active region cutout of SHARP 7115

for a magnetogram and five AIA wavelengths.

Wavelength (Å) Region of solar atmosphere
94 flaring regions
131 flaring regions
171 quiet corona, upper transition region
193 corona and hot flare plasma
304 chromosphere and transition region
1600 transition region and upper photosphere

Table 3.2: Regions of the solar atmosphere observable by six AIA wavelength channels.

Source: AIA Instrument Website - https://www.lmsal.com/sdodocs/doc/dcur/SDOD0060.zip/zip/entry/

We consider SHARPs beginning in 2010, when SDO became operational, until 2017, when

Solar Cycle 24 approached solar minimum. Within a SHARP, which is simply tracking a region

of the Sun, the ARs are not centered and multiple flares can occur within an AR at a given time.

We are interested in characterizing the time period leading up to large solar flares, that is, flares of

magnitude greater than or equal to M5 (5×10−5 W/m2), as defined by the AIA-based flare catalog

[52]. Rather than using X-ray flux, the AIA-based flare catalog determines flare magnitudes using
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Figure 3.2: A plot of AIA images in 5 wavelengths (94 Å, 131 Å, 171 Å, 193 Å, 304 Å) and an
HMI magnetogram for SHARP 7115. The images at this timestep occur approximately 8 hrs and
36 mins before an M2.4 flare and 5 hrs and 45 mins after an M2.5 flare.

total summed intensity from the AIA SHARPs directly. Table 3.3 lists the flare counts for each

catalog. In processing the data, only AR cutouts with centers between ±65° heliographic longitude

from disk center are considered. This has the effect of removing limb flares—flares observed at the

edge of the solar disk—as the intensity resulting from limb flares is not comparable with flares on

the face of the Sun. After accounting for missing data, we are left with 57 flares greater than or

equal to M5 across 27 different SHARPs, recalling that M5 is the minimum flare magnitude for

which SWPC issues an alert.

Flare Catalog X M5–M9 M1–M4 C
GOES 23 43 328 2242

AIA-based ERT 25 39 355 15687

Table 3.3: Total flare counts for Solar Cycle 24 by flare class.
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3.2 Sample Creation

For this study, we consider flares of interest as flares of magnitude greater than or equal to

M1. While M5 is the baseline for SWPC to issue an alert, weaker M1–M4 flares are of interest

from a research perspective in the literature. Investigating the time period leading up to M1–M4

flares also results in more samples, as there are considerably more M1–M4 flares than M5+ flares.

We define a sample as data collected during a time period of a fixed length preceding a solar

flare of interest. In the prediction literature, researchers are interested in a 12 hr time period before

a flare for short-term prediction [18] [43] [12]. Accordingly, we consider samples of a fixed 12 hr

window preceding flares greater than or equal to M1. Because M5 flares are no longer considered

precursors, samples containing an M5 or greater flare are removed. This study is limited to only

examining the time period preceding the first in a series of large flares, as those flares are the most

difficult to predict. After additionally removing samples that are overlapped in time by more than

20%, we obtain the following sample counts:

total samples X flares M5–M9 flares M1–M4 flares
104 20 26 58

Table 3.4: Sample counts for X, M5–M9, and M1–M4 flares in Solar Cycle 24.

Sample characteristics:
• A fixed time window of 12 hrs before an M/X flare
• Sample window does not contain a flare ≥ M5
• Samples are not overlapped in time by more than 20%

In Solar Cycle 24, there are 25 X flares in total (Table 3.3). Of the five unaccounted for X

flares in Table 3.4, four occur directly after another flare greater than or equal to M5 and one occurs

on the limb of the Sun, making the intensity not consistent with other flares of similar magnitude.

The 104 total samples are determined from only 27 SHARPs out of a total of 1226 SHARPs for

Solar Cycle 24.



Chapter 4

Methodology

In the below subsections, we describe how to manipulate the flare data to create a space-time

matrix. We then introduce the concept of using SVD for spatiotemporal event detection.

4.1 Dimension Reduction of the Data

Within the field of information visualization, many models and nomenclature exist for trans-

forming three-dimensional spatiotemporal datacubes. Transformations of the data can allow for

more intuitive or descriptive interpretations of information. Our datacube consists of two spatial

dimensions and one temporal one: (x, y, t). “Space-flattening” refers to flattening the datacube

along either the x or y axis (in our case, longitude or latitude, respectively) so that we are left

with a 2D plane, either (x, t) or (y, t) [4]. Given a time series of images, this can be interpreted as

summarizing each image by obtaining a “slice” or cross-section cut of it.

For each SHARP, in the wavelengths considered, we begin with a time series of images, as in

Figure 4.1. To space-flatten the data, we proceed in the following steps as illustrated in Figure 4.4:

(1) Subsample the AIA SHARP images at a 12 min cadence.

(2) Sum either across rows or down columns (Figure 4.2) to obtain a 1D vector for each image.

(3) For each 1D vector, center and crop around values that are greater than 60% of the maxi-

mum intensity value of the vector to obtain a uniform vector length of 256.

(4) Combine these signals to form a single 2D matrix representing each SHARP (Figure 4.3).

We will refer to this matrix as the “summed SHARP matrix”.
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Following steps 1 through 4 transforms the data so that spatiotemporal features can be analyzed

via an SVD, as discussed in Section 4.2. Step 3 involves centering around pixels which are 60% or

greater than the maximum intensity value of the vector. The 60% value is chosen such that the

majority of the intensity of the signal is captured. Then, the vectors are cropped to a length of 256

which is less than the height y of each SHARP in pixels. In Chapter 5, we will discuss the natural

spatial invariance observed when summing across rows and down columns.

Figure 4.1: An example of four AIA images taken using a wavelength of 131 Å for SHARP 4698
with a cadence of 1 hr. An X1 flare occurs 4 minutes after the image in (c).
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Figure 4.2: The 1D vectors created by summing the images in Figure 4.1 across rows (left) or down
columns (right), and then cropping to obtain vectors of length 256.
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Figure 4.3: A surface plot of the matrix produced by summed images in AIA 131 Å for SHARP
4698. At a 12 min cadence, every 10 timesteps represents 2 hrs.
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Figure 4.4: The series of data transformations taken to extract spatial and temporal modes from a
time series of AIA images.
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4.2 Singular Value Decomposition

The singular value decomposition (SVD) is the one of the most ubiquitous matrix factoriza-

tions in linear algebra. An SVD of a matrix M ∈ Rm×n, returns a decomposition of the form

M = UΣV ∗

where U is a unitary matrix that relates to the row space of M and similarly V relates to a

unitary decomposition of the column space of M [24]. As such, in the case that the rows of M

represent space and the columns represent time, the left singular vectors ui that compose the

columns of U can be interpreted as spatial modes of M and the right singular vectors vi that

compose the columns of V can be interpreted as temporal modes. The matrix Σ is diagonal and

contains the singular values which are scalar coefficients of the corresponding singular vectors. It

is standard to order the singular values σi (with their corresponding singular vectors) such that

σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0.

For each SHARP, we create a summed SHARP matrix as shown in Figure 4.3, where the rows

represent pixel number and the columns represent time. We then take the SVD of the summed

SHARP matrix and obtain singular values as shown in Figure 4.5. Based on the singular values,

the contribution of each singular vector can be determined. Notice that the singular values decay

exponentially (Figure 4.5). By the ninth singular value, σ9 is only 3.88% of σ1. Beyond the 9th

singular value, the singular values have decayed so much that the information contained in the

corresponding singular vectors is no longer physically relevant. Rather, those singular vectors exist

to ensure orthogonality of U and V .
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Figure 4.6: The first seven singular vectors of the U and V matrices (i.e. the columns of U and
V ) obtained from taking the SVD of the summed SHARP 4698 matrix (summed across rows) in
Figure 4.1.
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As stated above and shown in Figure 4.6, the SVD gives an orthonormal decomposition of

the spatial and temporal phenomena represented in the summed SHARP matrix into the U and V

singular vectors, respectively. Figure 4.4 shows the series of transformations taken to decompose

the 3D datacube of images in time into spatial and temporal modes represented by the singular

vectors. The amplitude of the singular vector vi at a given time represents the quantity of the

spatial component ui that is present at a given time, scaled by the singular value σi. We leverage

these two properties in understanding features corresponding to solar flares that appear in the

resulting right singular vectors v1, . . . , vn of our data matrix to obtain a time series. The SVD for

the same SHARP appears slightly different in each wavelength as a result of flaring occurring at

different times in each layer of the solar atmosphere.

Given that SVDs have been used to separate spatial and temporal modes in data [29] and

that it is difficult to effectively preserve spatial structure in time series images for event detection,

the goal of this work is to analyze the time period preceding major solar flares to attempt to answer

the following questions: (1) Can we devise a method to identify microflares in image data preceding

a major solar flare while preserving spatial information? (2) Using this method, is there a pattern

in precursor flares observable in the resulting signals?



Chapter 5

Results

Taking the SVD of each of the 27 SHARPs with flares greater than or equal to M5, we analyze

the properties of the singular vectors from the resulting 27 temporal mode (V ) matrices which are

treated as time series. Furthermore, through our analysis of the precursor activity exhibited in the

singular vectors, we are interested in identifying three classes of flares: X, M5–M9, and M1–M4.

5.1 Invariance of Results to Summing Rows or Summing Columns

In Chapter 4, we sum a time series of images either across rows or down columns to obtain

a summed SHARP matrix, as demonstrated in Figure 4.3. Due to the anisotropic appearance

of the AIA images (as can be seen in Figure 4.1) and the differences in the structure of the two

summed SHARP matrices, we expect the singular vectors of the two matrices to be different.

Instead, we obtain singular vectors that appear very similar regardless of which dimension the

image is summed along. While the amplitudes of the peaks may differ, the peaks align well in the

temporal dimension across all singular vectors. For example, looking at the M4.4 flare occurring at

approximately timestep 120 in SHARP 5298, the summed down columns (dashed red curve) peak

increases in height relative to the summed across rows peak (solid black curve) in higher singular

vectors. However, the peak corresponding to the flare remains aligned in time (Figures 5.1, 5.2,

5.3). This observed isotropy in the singular vectors is surprising, as it reveals that taking the SVD

of the AIA SHARPs is spatially invariant. We note that for singular vectors corresponding to

higher singular values, creating the SHARP matrix by summing across rows compared to down
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columns leads to slight deviation in amplitude of the fine structure within the vectors. From these

experiments, we conclude that the summed AIA SHARPs are isotropic. Because this finding implies

invariance, we restrict our observations to row-summed SHARP matrices for the remainder of this

study, as summing across rows results in a smaller summed 1D vector.

For predictive models developed using machine learning, the training time is heavily depen-

dent on the dimensionality of the data. This discovered isotropic property of the summed SHARPs

raises the possibility of training flare prediction models using the 1D singular vectors (or some com-

bination of them) rather than the full 2D SHARP images, while still preserving spatial information.

Currently many prediction models are trained on SHARPs subsampled at hour-long cadences or

more [18][37]. Using an shorter cadence significantly increases training time. However, because 1D

data is much less memory-intensive compared to 2D data, it might be advantageous to subsample

the data, which is available at a 12 sec cadence, at a finer cadence in its summed form to capture

changes in solar structure on shorter time scales.

5.2 Consistency of Singular Vector “Events” with AIA Flare Catalog

For flares for which SWPC would issue an alert to the public (greater than or equal to

M5), we find that flare events line-up exactly with peaks in the resulting singular vector signals.

It is helpful to keep Figure 4.6 in mind, recalling that we have a U and V matrix composed of

singular vectors for each SHARP. In general, we observe that amplitude of the peaks in the 1st

singular vector correspond with the magnitude of flaring events. Taller peaks tend to represent

larger flares, while smaller peaks tend to represent smaller flares. The peaks in singular vector

1 could be used to determine flare magnitude without the need for a flare catalog. In contrast,

the precursor C and smaller flares become much more prominent (relative to the large flare peaks)

after the 4th singular vector. The size of the microflare peaks relative to the size of a solar flare

of interest is amplified in these singular vectors, revealing previously undetected structure in the

data. When using decompositions such as the SVD, one generally cares about the information in

the data represented by the singular vectors corresponding to the singular values with the largest
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Figure 5.1: Singular vector 2, v2, of the V matrix resulting from taking the SVD of the summed
SHARP matrices for SHARPs 1449, 4698, 5298, and 7115.

magnitude. In this case, however, the information relevant to understanding microflares preceding

large flares may be contained in singular vectors corresponding to smaller singular values.

In Figures 5.4–5.7 and 5.10, the vertical lines represent flares defined by the AIA flare catalog.

We observe that the larger peaks in the singular vector signals tend to align with flares of greater

magnitude, particularly in singular vector 1. For example, the M7.9 peak in Figure 5.4 is smaller

in magnitude in singular vector 1 than the X1.6 flare. The X1.1 peak is smaller than the X4.0 peak

in Figure 5.5. As the singular vectors increase, the M1–M4 peaks also increase in magnitude. For

C flares, we also find this to be true. Figure 5.6 shows the same plot of singular vectors 1–9 as in

Figure 5.4 zoomed into the 150–200th timesteps. Here, the C9.5 flare corresponds with the largest

peak and small peaks exist where flares are defined by the AIA catalog.
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Figure 5.2: Singular vector 5, v5, of the V matrix resulting from taking the SVD of the summed
SHARP matrices for SHARPs 1449, 4698, 5298, and 7115.

Figure 5.3: Singular vector 9, v9, of the V matrix resulting from taking the SVD of the summed
SHARP matrices for SHARPs 1449, 4698, 5298, and 7115.
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Characterizing the magnitude of microflares using this SVD technique provides additional

information compared to summing up pixel intensities in AIA images as in [52] as well as the GOES

definitions of flares based on X-ray flux. Having seen in Section 5.1 that large-scale spatial structures

are invariant whether the images are summed across rows or down columns, we deduce that this

SVD technique preserves large-scale spatial information in both directions for each timestep.

Singular Vector Information Content
1 Average of spatiotemporal data, smoothest

2–3 Corrections to averages of spatiotemporal data
4–10 Fine structure within the signals, each successive singular vector

accounts for increasingly finer structure
approx 10+ Non-physical information, ensures orthogonality of matrix

Table 5.1: A summary of what we generally observe from each singular vector across SHARPs with
large flares.

As discussed in Chapter 4, we consider samples of length 12 hrs (60 timesteps) before M1

and greater flares. In total, we have 20 X flare samples, 26 M5–M9 flare samples, and 58 M1–M4

flare samples which occur across 27 different SHARPs. Using singular vector 4, we show examples

of two samples leading up to an X flare, an M5–M9 flare, and an M1–M4 flare. Contrasting the

two samples preceding X flares, the sample in Figure 5.7a has significantly more precursor activity

compared to the sample in Figure 5.7b, which remains rather quiet in the 12 hrs before the X3.8

flare. In the sample leading up to the M6.4 flare, we see that the peak corresponding to the larger

C9.9 flare is smaller than the peak corresponding to the C7.5 flare (Figure 5.7c). Similarly, the

signal in Figure 5.7d has a tall peak corresponding with a C9.8 flare approximately 2 hrs (10

timesteps) prior to the M1.4 flare it precedes. While the flare peak amplitudes do not necessarily

correspond with precursor flare magnitude in the singular vector 4 samples, the microflare peaks

within the singular vectors align with flares defined by the AIA flare catalog.
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Figure 5.4: A plot of singular vectors 1–9 of the V matrix for SHARP 4698 in AIA 131 Å. The first
80 hrs of data for the SHARP are shown, with every 10 timesteps on the time-axis representing 2
hrs.
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Figure 5.5: A plot of singular vectors 1–9 of the V matrix for SHARP 1449 in AIA 94 Å. The first
60 hrs of data for the SHARP are shown, with every 10 timesteps on the time-axis representing 2
hrs.
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Figure 5.6: A plot of singular vectors 1–9 of the V matrix for SHARP 4698 in AIA 131 Å. The
singular vectors are cropped to show the 150–200th timesteps, which represents a total of 10 hrs.
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(a) A 12 hr sample preceding an X1.5 flare in SHARP 5298.

(b) A 12 hr sample preceding an X3.8 flare in SHARP 4698.

(c) A 12 hr sample preceding an M6.4 flare in SHARP 750.
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(d) A 12 hr sample preceding an M1.4 flare in SHARP 892.

Figure 5.7: Examples of singular vector 4 samples (in absolute value) 12 hrs before a solar flare of
interest. The 12 hr samples are represented by the blue line, while the flare is represented by the
black line. Note that the y-axis varies across the plots for each SHARP.

5.3 Correlating Precursor Activity to Magnitude of Solar Flare Event

Using the 104 samples of data collected 12 hrs before M/X solar flares in Solar Cycle 24, we

examine the singular vector signals in an attempt to identify relationships between flare precursors

and large solar flares. We note that due to a small sample size, this study remains rather qualitative

in nature.

For each SHARP, we have as many singular vectors (of V ) as there are timesteps in the

data. We first determine which aspects of the data can be characterized using the singular vectors.

In singular vector 1 of the U matrix, u1, we observe that the amplitude is very smooth and flat

(see Figure 4.6 for an example). Since the amplitude of singular vector 1 of the V matrix, v1,

represents the amount of u1 present at a given point in time (scaled by σ1), the singular vector v1

can be interpreted as containing information about the averaged pixel values of the AIA image data.

Singular vectors v2 and v3 represent corrections to the averaged values in v1, as the corresponding

U singular vectors u2 and u3 also appear rather smooth. Fine structure within the signals tends

to appear in singular vectors 4–9. Drawing parallels with taking a Fourier transform of data,
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each successive singular vector resolves increasingly finer structure in the data until it eventually

becomes physically irrelevant. With our data, this appears to be the case beyond singular vector

9, also shown by the decaying magnitude of the singular values in Figure 4.5. Table 5.1 describes

in further detail the aspects of the data that can be observed by each singular vector.

Looking at the first 9 singular vectors, it is of interest to determine if any separation between

flare classes (X, M5–M9, and M1–M4) can be seen within the samples. After separating the samples

by flare class, we take the 25th and 75th percentiles of the amplitude over all the samples in a flare

class at each timestep. In Figure 5.8, the upper line for each flare class represents the 75th percentile

of the singular vector samples at each timestep and the lower line represents the 25th percentile.

Thus, for each flare class, 50% of the precursor signal values lie between the plotted lines. The 25th

percentile lines for all three flare classes remain fairly constant, representing a background of the

signal. In singular vector 1, there is much more highly oscillatory behavior in the 75th percentile

line for the M5–M9 signal compared to the other flare classes (Figure 5.8a). This suggests that

there may exist a pattern of precursor flares occurring at the timesteps corresponding to those

peaks in the M5–M9 signals. The sample amplitudes for the different flare classes have the greatest

separation in singular vector 4, with both the M5–M9 and M1–M4 75th percentile lines noticeably

higher than the X flare 75th percentile (Figure 5.8b). From the plot of singular vector 7 in Figure

5.8c, the X flare 75th percentile line dips significantly below the other 75th percentile lines from

about timestep 22–38 (which corresponds with approximately 4–8 hrs before a flare). There is

potentially a dip in activity 4–8 hrs before an X flare. The quieter precursor activity between

timesteps 22–38 can also be seen looking at the singular vector plots for the first 20 samples in

Figure 5.9. In general, there is evidence in support of the fact that X flare precursor signals contain

less activity than signals preceding M flares in the 12 hrs prior.

While it is convenient to divide flares into classes C, M, X, their magnitudes are continuous

measurements. The flare class boundaries are rather arbitrary and present a challenge for charac-

terizing properties of each flare class. For example, in flare prediction a M9.8 flare may have very

similar properties to an X1.5 flare (and different properties than a low M flare), while a model is
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(a) The 75th and 25th percentiles of sample amplitudes in singular vector 1 for each flare class.

(b) The 75th and 25th percentiles of sample amplitudes in singular vector 4 for each flare class.

(c) The 75th and 25th percentiles of sample amplitudes in singular vector 7 for each flare class.

Figure 5.8: Plots of the 75th and 25th percentiles of sample amplitudes separated by flare class.
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expected to classify the M9.8 flare and the X1.5 flare into different categories. Using this method

of decomposing AIA image data, a peak for a C9.8 flare can appear much larger than an M1.4 flare

as shown in Figure 5.7d. Depending on the singular vector chosen, the relative size of the smaller

flare to the larger flare varies as well. Because it is difficult to distinguish flares solely by peak

flux, it is necessary to identify unique patterns in precursor information that could give clues to

the magnitude of an impending flare. These patterns could potentially be used as input features

into flare prediction models in the future. We identify some properties of each of the flare classes

identified with this SVD-based method.

In singular vector 1, the signal peak height and flare magnitude have a positive correlation

(Figure 5.4). Because the flare peaks align with the AIA catalog in time and the peak heights

align with flare magnitudes in singular vector 1, we can use the peak heights in singular vector 1

to identify solar flares. Flare peaks that appear in singular value 1 also tend to appear as a peak

in all subsequent singular vectors, often with smaller amplitude (Figure 5.9). In singular vectors

4–9, which show fine structure within the data, the relative peak amplitudes of the precursor flares

tend to be much larger relative to the flare of interest. We analyze properties of the signals by flare

class below:

X flares: We note that 5 out of the 20 X flares have an M1–M4 flare preceding them from

the AIA catalog. All 5 of these instances occur between 8 and 11 hrs before an X flare. Over half

(11/20) of the signals fall entirely below a threshold value of 0.2 (not scaled by the singular value)

including the signals for the two X3 flares, suggesting there is not much precursor activity for many

X flares. Compared to the maximum flare peak amplitude of approximately 0.7 in singular vector

4 for an X1.6 flare in SHARP 877, this consistent quiet activity in the signals provides evidence

that many X flare precursor signals have little activity relative to M flares. Despite this, microflare

structure often appears in the 1–2 hrs before an X flare in the higher singular vectors. In Figure

5.11, a flare occurs at timestep 61, which is at the end of the 12 hr sample window. This increase

in microflare activity can be seen in timesteps 50-60 in singular vector 8 in Figure 5.11. Fourteen

of the 20 X flares have a C flare in the 2 hrs before the flare. As an example, the precursor peaks
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(a) A 12 hr sample in singular vector 1 preceding an X1.5 flare.

(b) A 12 hr sample in singular vector 9 preceding an X1.5 flare.

Figure 5.10: Examples of samples in different singular vectors for an X1.5 flare in SHARP 5298.
Figure 5.7a shows the plot for the same flare in singular vector 4. The 12 hr samples are represented
by the blue line, while the flare is represented by the black line.

become taller relative to the flare peak in higher singular vectors for an X flare in SHARP 5298 in

Figures 5.10 and 5.7a.

M5–M9 Flares: Out of the 26 total M5–M9 flares, 8 have an M1–M4 flare preceding them.

All but one of these peaks corresponds with a signal amplitude greater than 0.1 in singular vector

4. Of these 8 instances, 4 of them occur between 7–9 hrs before a flare. Three of them occur

approximately 4 hrs before a flare. One of them occurs approximately 10 hrs before a flare. So
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approximately 30% of the M5–M9 flares are preceded by a precursor flare of magnitude M1–M4,

and approximately 25% of the X flares are preceded by a M1–M4 precursor flare.

M1–M4 Flares: In total, we have 58 samples for the 12 hrs before M1–M4 flares. There

are twice the number of flares of this magnitude compared to both X and M5–M9 class flares. Of

the 58 total samples, only 9 of them contain M1–M4 flares within the precursor signal. Five of the

9 M1–M4 precursor flares occur between 9–11 hrs before another M1–M4 flare. When plotting the

samples by flare class, there is much more precursor activity in the flares with lower magnitude,

especially in the higher singular vectors. In singular vector 8 for all of the X flares, a majority of

the precursor signals have amplitudes below 0.2, while in the same singular vector for the M1–M4

flares, there is much more “popcorn-like” precursor activity as shown by the increased density of

yellow bars in singular vector 8 in Figure 5.11.

The amplitude of the peaks in singular vector 1 correlate well with flare magnitudes and thus,

could be used to determine the strength of flaring activity without the need for a flare catalog. By

amplifying the precursor activity in higher singular vectors, we are able to observe underlying

microflare structure. Through exploring the features of flare precursors within the singular vector

signals, we find observable features that could hint at the magnitude of an incoming flare. In the

higher singular vectors, the increase in microflare activity seen in the 1–2 hrs before an X flare could

be used as a feature in future prediction models. Consistent precursor activity throughout the 12

hr sample window in higher singular vectors could be indicative of a M1–M4 flare. Furthermore,

because we have found that X flares tend to have less precursor activity, especially 0–8 hrs before

a flare, we hypothesize that there is a period of time required for energy to build up in the solar

atmosphere before a large flare is released. In contrast, the popcorn-like precursor activity observed

in the 12 hrs prior to a smaller M1–M4 flare could prevent the energy build-up necessary for a larger

flare to occur.
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Figure 5.11: Bar plots of 12 hr samples by flare class.



Chapter 6

Conclusions and Future Work

In this work, we have presented an SVD-based method for identifying solar flare events with

minimal loss of spatial information from a sequence of images. To illustrate the utility of this

method, we performed an analysis of the time period leading up to large solar flare events to

further understand the relationship between large solar flares and precursors. We showed that AIA

active region images tend to be invariant to summing across rows or down columns, revealing that

the spatiotemporal data has natural isotropic properties. Decomposing these summed matrices via

SVD extracts the spatial and temporal modes and allows for the analysis of time series signals.

Within the signals, peaks that distinguish flare classes align well with those given in the GOES

X-ray flare catalog as used by SWPC and with newly created AIA flare catalog data. Finally, these

resulting singular vector signals demonstrate there is less precursor activity in X flares compared

to M flares. We hypothesize that large flares may require a period of quiet activity for energy to

build up in the solar atmosphere before the onset of a flare.

There are many possible directions to take this work in the future. One of the major challenges

with solar flare detection is simply the lack of events. We hope that further studies incorporate data

from the current Solar Cycle 25 as well as data from previous Solar Cycle 23 which was taken by

the Extreme ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory

(SOHO). With more flaring samples, it could be possible to use machine learning techniques like

neural networks and clustering to discover correlations in the precursor signals. Another obvious

extension of this work would involve exploring different precursor activity windows. While we
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looked at a 12 hr time window before large solar flares, it would be useful to study time periods

further back to elucidate patterns in precursor flare activity, especially as spatiotemporal data for

each SHARP can span over a month. Finally, exploring this SVD-based method in the context of

rare event identification/prediction of other geophysical phenomena such as earthquakes, volcanic

eruptions, or flooding, might reveal insights into precursors for these events as well.
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