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INTRODUCTION: Light beams carry both en-
ergy andmomentum, which can exert a small
but detectable pressure on objects they illumi-
nate. In 1992, it was realized that light can also
possess orbital angularmomentum(OAM)when
the spatial shape of the beam of light rotates (or
twists) around its own axis. Although not visible
to the naked eye, the presence of OAM can be
revealed when the light beam interacts with
matter. OAM beams are enabling new applica-
tions in optical communications, microscopy,
quantum optics, and microparticle manipula-
tion. To date, however, all OAM beams—also

known as vortex beams—have been static; that
is, the OAM does not vary in time. Here we
introduce and experimentally validate a new
property of light beams, manifested as a time-
varying OAM along the light pulse; we term
this property the self-torque of light.

RATIONALE: Although self-torque is found in
diverse physical systems (e.g., electrodynamics
and general relativity), to date itwasnot realized
that light could possess such a property, where
no external forces are involved. Self-torque is
an inherent property of light, distinguished from

the mechanical torque exerted on matter by
static-OAM beams. Extreme-ultraviolet (EUV)
self-torqued beams naturally arise when the
extreme nonlinear process of high harmonic gen-
eration (HHG) is driven by two ultrafast laser
pulses with different OAM and time delayed
with respect to each other. HHG imprints a
time-varying OAM along the EUV pulses, where
all subsequent OAM components are physically
present. In the future, this new class of dynamic-
OAM beams could be used for manipulating
the fastest magnetic, topological, molecular, and
quantum excitations at the nanoscale.

RESULTS: Self-torqued beams are naturally
produced byHHG, a process in which an ultra-
fast laser pulse is coherently upconverted into the
EUVand x-ray regions of the spectrum.Bydriving

the HHG process with two
time-delayed, infrared vor-
tex pulses possessing dif-
ferent OAM, ‘1 and ‘2, the
generated high harmonics
emerge as EUV beams
with a self-torque, ℏxq ≃
ℏqð‘2� ‘1Þ=td, thatdepends

on the properties of the driving fields—that is,
their OAMcontent and their relative time delay
(td)—and on the harmonic order (q). Notably, the
self-torque of light also manifests as a frequency
chirp along their azimuthal coordinate, which
enables its experimental characterization. This
ultrafast, continuous, temporal OAM variation
that spans fromq‘1 toq‘2 ismuch smaller than
the driving laser pulse duration and changes on
femtosecond (10−15 s) andeven subfemtosecond
time scales for high values of self-torque. The
presence of self-torque in the experimentally
generated EUV beams is confirmed by measur-
ing their azimuthal frequency chirp, which is
controlled by adjusting the time delay between
the driving pulses. In addition, if driven by few-
cycle pulses, the large amount of frequency chirp
results in a supercontinuum EUV spectrum.

CONCLUSION:Wehave theoretically predicted
and experimentally generated light beamswith
a new property that we call the self-torque of
light, where theOAMcontent varies extremely
rapidly in time, along the pulse itself. This in-
herent property of light opens additional routes
for creating structured light beams. In addition,
because the OAM value is changing on femto-
second time scales, atwavelengthsmuch shorter
than those of visible light, self-torqued HHG
beams can be extraordinary tools for laser-
matter manipulation on attosecond time and
nanometer spatial scales.▪
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Generation of EUV beams with self-torque. (A) Two time-delayed, femtosecond infrared
(IR) pulses with different OAM are focused into a gas target to produce self-torqued EUV
beams through HHG. The distinctive signature of self-torqued beams is their time-dependent
OAM, as shown in (B) for the 17th harmonic (47 nm, with self-torque x17 = 1.32 fs−1). (C) The
self-torque imprints an azimuthal frequency chirp, which enables its experimental
measurement.
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Light fields carrying orbital angular momentum (OAM) provide powerful capabilities for
applications in optical communications, microscopy, quantum optics, and microparticle
manipulation.We introduce a property of light beams, manifested as a temporal OAM variation
along a pulse: the self-torque of light. Although self-torque is found in diverse physical systems
(i.e., electrodynamics and general relativity), it was not realized that light could possess such a
property.We demonstrate that extreme-ultraviolet self-torqued beams arise in high-harmonic
generation driven by time-delayed pulses with different OAM.We monitor the self-torque of
extreme-ultraviolet beams through their azimuthal frequency chirp.This class of dynamic-OAM
beams provides the ability for controlling magnetic, topological, and quantum excitations and
for manipulating molecules and nanostructures on their natural time and length scales.

S
tructured light is critical for a host of ap-
plications in imaging and spectroscopy, as
well as for enhancing our ability to opti-
cally manipulate macro- to nanoscale ob-
jects such as particles, molecules, atoms,

and electrons. The distinctive phase and inten-
sity properties of structured light beams achieved
by exploiting the angular momentum of light
have garnered renewed interest in optical manip-
ulation and control (1). One of the most relevant
structured light beams are those carrying orbital
angular momentum (OAM), also known as vortex
beams (2). The OAM of light manifests from a
spatially dependent wavefront rotation of the
light beam, which is characterized by the phase
winding number, or topological charge, ‘. OAM
beams have been harnessed for applications in
diverse fields (3) such as laser communication
(4, 5), phase-contrast (6, 7) and superresolution
microscopy (8), kinematic micromanipulation (9),
quantum information (10), and lithography (10).
Spurred by these exciting technologies, a paral-
leled interest in the ability to control andmanipu-
late the OAM of ultrafast light pulses has also

emerged, resulting in numerous techniques that
can imprint OAMdirectly onto an arbitrary wave-
form. Diffractive and refractive optics (e.g.,
q-plates, spiral-phase plates, and holographic
techniques) (11–13) can impart OAM onto waves
from radio, to optical, and even x-ray (14) fre-
quencies, and recent advances in high harmonic
generation (HHG) have produced attosecond
extreme-ultraviolet (EUV) pulses with designer
OAM (15–28).
One of the most exciting capabilities enabled

by OAM beams is their ability to exert photo-
mechanical torques (2, 29, 30). Whereas the
linear momentum of light can be employed to
control and manipulate microscopic objects via
the gradient and scattering forces associatedwith
its intensity profile, optically induced torque
manifests from angular momentum transfer be-
tween an object and a light field. This enables
fundamental capabilities in advanced classical
and quantum optical control and manipulation
techniques, such as optical tweezers, lattices, and
centrifuges (9, 31–34), allowing for the realiza-
tion of molecular and micromechanical rotors,
single-particle trafficking, and fundamental studies
of atomic motion in liquids and Bose-Einstein
condensates (35, 36).
We theoretically predict and experimentally

validate the generation of light beams that carry
time-dependent OAM, thus presenting a self-
torque. This inherent property of structured light,
the self-torque, ℏx, is defined as ℏx ¼ ℏd‘ðtÞ=dt ,
where ℏ‘ðtÞ is the time-dependent OAM con-
tent of the light pulse. After being generated, the
time-dependent OAM remains as a structural
property of the light beam propagating in free

space, where no interaction with external agents
is present. Thus, the term self-torque refers to
the inherent angular acceleration of the light
beam, in an analogy with other physical systems
that possess a self-induced time variation of the
angular momentum—such as the radiation reac-
tion of charged particles (37) or gravitational
self-fields (38). Although OAM is well understood
as a spatial property of light beams, to date, light
pulses with time-dependent OAM have not been
proposed or observed. We demonstrate that the
self-torque arises as a necessary consequence
of angular momentum conservation during the
extreme nonlinear optical process of HHG. In
HHG, the interaction of an intense field with an
atom or molecule leads to the ionization of an
electronic wave packet, which acquires energy
from the laser field before being driven back
to its parent ion, emitting a high-frequency
photon upon recollision (39, 40). The emitted
harmonic radiation can extend from the EUV to
the soft x-ray regime if the emissions from many
atoms add together in phase (41–44). The result-
ing comb of fully coherent harmonics of the
driving field in turn yields trains of phase-locked
attosecond pulses (45, 46).
Self-torqued light beams naturally emerge when

HHG is driven by two time-delayed infrared (IR)
pulses that differ by one unit of OAM (Fig. 1). The
dynamical process of HHG makes it possible to
imprint a continuous time-varying OAM, where
all OAM components are present—thus creating
self-torqued EUV beams. Intuitively, these exotic
pulses can be understood as being composed of
time-ordered photons carrying consecutively in-
creasing OAM.
The self-torque of light translates to an azi-

muthal frequency chirp (i.e., a spectral shift
along the azimuthal coordinate) on the radia-
tion emission—and vice versa, which allows us to
quantify the self-torque by an experimental mea-
surement of the azimuthal frequency chirp. In
addition, the degree of self-torque of EUV har-
monic beams can be precisely controlled through
the time delay and pulse duration of the driving,
IR laser pulses. The generation of light beams
with self-torque opens up a route for the investi-
gation of systems with time-varying OAM that
spontaneously appear in nature (47) as macro-
scopic dynamical vortices or—owing to the high
frequency of the beams—microscopic ultrafast
systems. For example, because short-wavelength
light can capture the fastest dynamics in mate-
rials (48, 49), self-torqued EUV beams can be
expected to be used for imaging magnetic and
topological excitations, launching selective and
chiral excitation of quantummatter (50), imprint-
ing OAM centrifuges (32), switching superposi-
tions of adiabatic charge migration in aromatic
or biological molecules (51, 52), or manipulating
the OAM dichroism of nanostructures (53) on
attosecond time scales.

Theory underlying the self-torque
of light

To create light beams with self-torque, we drive
the HHG process with two linearly polarized IR
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pulses exhibiting the same frequency content
(centered atw0 ¼ 2pc=l0), butwith differentOAM,
‘1 and ‘2 , where j‘1 � ‘2j ¼ 1 . The two laser
pulses are separated by a variable time delay, td,
which is on the order of the individual pulse
widths (Fig. 1A) [see also supplementary text
section S1 in (54)]. These two collinear IR vortex
beams are then focused into an atomic gas tar-
get, such that the transverse intensity distri-
bution of the two drivers exhibits maximum
overlap. We model the HHG process using full
quantum simulations in the strong-field ap-
proximation (SFA) that include propagation via
the electromagnetic field propagator (55), a
method that was used in several previous cal-
culations of HHG involving structured pulses
(16, 18, 20, 21, 26, 28, 44, 56). We consider the
driving vortex pulses possessing ‘1 and ‘2 , de-
scribed by a sin2 envelope with t = 10 fs full
width at half-maximum (FWHM) in intensity,
centered at l0 = 800 nm, and delayed by td = t =
10 fs (see materials and methods for further
details). Figure 1A shows a schematic of the
temporal envelopes of each pulse (red), as well
as their superposition (blue). Figure 1C shows
the time-dependent OAM of the 17th harmonic
obtained from our simulations (color scale),
whereas in Fig. 1B the spatial intensity distri-
bution of the 17th harmonic is sketched at three
instants of time during the emission process.
To extract the temporal variation of the OAM,
we first select the HHG spectrum in the fre-
quency range ðq� 1Þw0 to ðqþ 1Þw0 (where q is
the harmonic order to explore, being q = 17 in
Fig. 1), and then we perform a Fourier transform
along the azimuthal coordinate (20) at each time
instant along the harmonic pulse. Notably, the

temporal variation of the OAM ismonotonic and
continuous, spanning over an entire octave of
consecutive topological charges—i.e., it includes
all OAM components from q‘1 ¼ 17 to q‘2 ¼ 34.
The nature of self-torqued beams can be un-

derstood through a simple theoretical analysis.
Previous works in OAM-HHG have demonstrated
that an IR vortex beam can be coherently con-
verted into high-frequency vortex beams (15–28).
When HHG is driven by a single, linearly polar-
ized, IR vortex beam with integer topological
charge, ‘1, the OAM of the qth-order harmonic
follows a simple scaling rule, ‘q ¼ q‘1 (16, 17).
This scaling reflects the nature of OAM conser-
vation in HHG, where q IR-photons combine
to produce the qth-order harmonic. If HHG is
driven by the combination of two collinear and
temporally overlapped IR vortices with differ-
ent OAM, ‘1 and ‘2 , each harmonic order will
span over a wide OAM spectrum, given by ‘q ¼
n1‘1 þ n2‘2 (20), where n1 and n2 are the num-
ber of photons absorbed from each driver
ðn1 þ n2 ¼ q;whose total must be odd due to
parity restrictionsÞ. Each channel, ðn1;n2Þ, is
weighted according to a binomial distribution,
associated with the different combinations of
absorbing n1 photons with ‘1 and n2 photons
with ‘2 . The effect of the harmonic intrinsic
phase in the OAM spectrum, also explored in
(20), is second order, and negligible for the re-
sults presented here.
In this work, we consider the HHG fields that

can be produced by two IR laser vortex pulses
separated by some time delay. The superposition
of the delayed envelopes turns into a temporal
dependence in the relative weights of the driving
fields—thus introducing time as an additional

parameter. To show how this influences the
OAM structure of the EUV harmonics, we con-
sider two time-delayed, collinear, linearly polar-
ized, IR driving pulses with different OAM, ‘1
and ‘2 . We denote, in cylindrical coordinates
ðr; f; zÞ, the complex amplitudes of the driving
fields at the focus position (z = 0) as U1ðr; f; tÞ
and U2ðr; f; tÞ. For simplicity, we consider the
field amplitudes at the ring of maximum inten-
sity at the target—where the HHG efficiency is
highest—and the resulting field can be written as
Uðf; tÞ ¼ U0ðtÞf½1� hðtÞ�ei‘1f þ hðtÞei‘2fg,where
U0ðtÞ ¼ U1ðtÞ þ U2ðtÞ and hðtÞ ¼ U2ðtÞ=U0ðtÞ
is the relative amplitude of the second beam.
According to the strong-field description of HHG,
the amplitude of the qth-order harmonic, Aqðf; tÞ,
scales nonperturbatively with that of the driving
laser, with an exponent p < q [p ≃ 4 for our laser
parameters (20)], whereas the qth-order harmonic
phase is considered to be q times that of the
driver (see supplementary text section S1 for the
complete derivation); thus

Aqðf; tÞºUp
0 ðtÞ

� Pp
r¼0

p
r

� �
ð1� �hðtÞÞreir‘1f�hðp�rÞðtÞeiðp�rÞ‘2f

� �

� eiðq�pÞ½ð1��hðtÞÞ‘1þ�hðtÞ‘2 �f ð1Þ

where r is an integer and �hðtÞ is the average of
hðt) over the time it takes the ionized electron
to complete the rescattering trajectory that con-
tributes to the generation of a particular har-
monic. For this average, we have considered the
so-called short trajectories (57, 58), whose excur-
sion time can be approximated to half a cycle.
The contribution of long trajectories to the OAM
content is two orders of magnitude weaker than
that of the short ones (20). The summation in
Eq. 1 is carried over p different OAM channels,
eachweighted by a binomial distribution in accord-
ance with the combinatory nature of the HHG
up-conversion process. Parity conservation in
HHG demands that the total number of photons
absorbed from each driving field, n1 þ n2 , must
be odd, which implies that to generate all inter-
mediate OAM states between q‘1 and q‘2 , the
OAM of the drivers must differ by one unit, i.e.,
j‘1 � ‘2j =1. The mean OAM of the qth-order
harmonic at any instant of time along the har-
monic pulse is given by [see (54)]

�‘qðtÞ ¼ q
h
1� �hðtÞð Þ‘1 þ �hðtÞ‘2

i
ð2Þ

and the width of the OAM distribution is

s‘q ¼ j‘2 � ‘1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�hðtÞ

�
1� �hðtÞ

�r
ð3Þ

In analogy with mechanical systems, we char-
acterize the time-varying OAM spectrum of the
qth-order harmonic via the self-torque

xq ¼ d�‘qðtÞ=dt ð4Þ

As the OAM of light is defined as ℏ‘, the self-
torque is given by ℏx. For simplicity we factor
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Fig. 1. Generation of EUV beams with self-torque. (A) Two time-delayed, collinear IR pulses
with the same wavelength (800 nm), but different OAM values, are focused into an argon gas target
(HHG medium) to produce harmonic beams with self-torque. The spatial profile of the complete,
time-integrated, HHG beam from full quantum simulations is shown on the EUV CCD. (B) Predicted
evolution of the intensity profile of the 17th harmonic at three instants in time during the emission
process. (C) Temporal evolution of the OAM of the 17th harmonic, for two driving pulses with the

same duration t ¼ 10 fs, at a relative time delay of td ¼ t. The average OAM, �‘17 (solid green), and
the width of the OAM distribution, s‘17 (distance between the solid and dashed-green lines), are
obtained from Eqs. 2 and 3. The self-torque associated with this pulse, x17 = 1.32 fs−1, is obtained
from the slope of the smooth and continuous time-dependent OAM.
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out ℏ and denote the self-torque by x, in units
of fs−1. It is worth mentioning that s‘q de-
pends weakly on the harmonic order, as the
parameter p remains almost constant along the
nonperturbative spectral plateau. The nonper-
turbative nature of the HHG process reduces
the number of available channels to generate
the qth-order harmonic from q (perturbative)
to p~4 (nonperturbative). As typically p << q,
�‘qðtÞ appears as a well-defined quantity whose
relative error, s‘q=�‘q; decreases as the harmonic
order increases. Thus, �‘qðtÞ approaches the clas-
sical behavior, i.e., its relative uncertainty tends
to 0 in the limit of large harmonic orders, con-
verging to perfectly defined intermediate OAM
states.
In Fig. 1C, we show the temporal evolution of

the mean OAM of the 17th harmonic, �‘17 (solid-
green line), and its OAM width, s‘17 (dashed-
green lines). In this case, where td = t, we can
approximate the self-torque as constant over
the OAM span:

xq e qð‘2 � ‘1Þ=td ð5Þ

which provides a straightforward route for con-
trolling the self-torque through the OAM of the
driving pulses and their temporal properties. The
example shown in Fig. 1C corresponds to a self-
torque of x17 ¼ 1:32 fs�1 , which implies an atto-
second variation of the OAM. Equation 5 is valid
only if td ≃ t, and if this condition is relaxed, the
self-torque must be calculated from the defini-
tion given by Eq. 4. Actually, td ¼ t is a partic-
ularly interesting case, as it corresponds to the
time delay where the weight of all intermediate
OAM states is more uniform over all the OAM
span (see fig. S1 for the time-dependent OAM for
different time delays, showing a consistently
excellent agreement between the full quantum
simulations and the OAM content predicted by
Eqs. 2 and 3).
It is important to stress that even though the

mean OAM value at each instant of time may be
a noninteger, the nature of self-torqued beams
is different from that of the well-known frac-
tional OAM beams (21, 59–61). In particular, the
mere superposition of two time-delayed vor-
tex beams—carrying ‘i ¼ q‘1 and ‘f ¼ q‘2 units
of OAM, respectively—does not contain a self-
torque. Although it does lead to a temporal
variation of the average OAM similar to that in
Eq. 2, it does not contain physical intermediate
OAM states, i.e., photons with OAM other than
‘i and ‘f . Self-torqued beams, by contrast, con-
tain all intermediate OAM states, which are
time-ordered along the pulse (see Fig. 1C).
In addition, the width of the instantaneous

OAM distribution of self-torqued beams (Eq. 3)
is much narrower than that of the mere super-
position of two time-delayed OAM beams—
which in the case of ‘i ¼ q ‘1 and ‘f ¼ q ‘2 is
s‘q ¼ qj‘2 � ‘1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðtÞð1� hðtÞÞp

. This is a result
of the nonperturbative behavior of HHG, which
enables the creation of well-defined intermed-
iate OAM states in a self-torqued beam. In Movie 1
(and in figs. S3 and S4) we further evidence the

distinctions in the temporal evolution of the
OAM content and phase and intensity profiles
between self-torqued beams and themere super-
position of two time-delayed OAM beams. In the
latter case, the phase and intensity profiles
remain q-fold symmetric, whereas in self-
torqued beams, the q-fold symmetry is broken.
This breakdown in rotational symmetry is man-
ifested in both the intensity distribution and the
corresponding phase profiles of the self-torqued
beams. Whereas the intensity distribution ex-
hibits a characteristic “crescent” shape due to
the coherent combination of vortex beams with
subsequent OAM charges (‘i þ ‘iþ1, as previously
shown in Fig. 1), the associated phase profiles
show the continuous appearance of new vortex
singularities along a single row. In other words, a
self-torqued beam can be understood as a topo-
logical structure where new vortices emerge one
at a time.
It is of paramount relevance to evidence the

physical nature of the self-torqued beams by
temporally characterizing the intermediate OAM
states, ‘qðtkÞ, with q‘1 < ‘qðtkÞ < q‘2. Assuming
a beam with constant self-toque xq, the compo-
nent of the qth-order harmonic carrying an OAM
of ‘qðtkÞ will appear at the time tk ¼ ‘qðtkÞ�q‘1

xq
after the peak amplitude of the first driving
pulse, exhibiting a temporal width, according

to Eq. 3, of Dtk ¼ s‘q
xq

¼ t
ffiffiffiffiffiffiffiffiffiffiffiffi
p�hð1��hÞ

p
q ≪ t . There-

fore, a self-torqued pulse can be thought of as
a pulse with a time-dependent OAM, with a
temporal OAM variation much smaller than
the width of the driving pulses, reaching the
attosecond time scale for sufficiently high values
of self-torques. This allows us to stress the dif-
ference between self-torqued beams and a train
of nonoverlapping pulses with different OAM
(62). Finally, in analogy to polarization gating
techniques (63), self-torqued EUV beams open

the possibility of subfemtosecond OAM-gating
techniques, providing a high degree of tempo-
ral control over laser-matter interactions involv-
ing OAM.

The azimuthal frequency chirp of
self-torqued beams

A direct consequence of self-torque is the pres-
ence of an azimuthal frequency chirp in the light
beam. As the phase term associated with a time-
dependent OAM is given by ‘qðtÞf, the instant-
aneous frequency of the qth-order harmonic—
given by the temporal variation of the harmonic
phase, ϕqðt; fÞ—is shifted by the self-torque as

wqðt; fÞ ¼
dϕqðt; fÞ

dt
¼ wq þ d‘qðtÞ

dt
f ≈ wq þ xqf

ð6Þ
Therefore, the harmonics experience an azi-

muthal frequency chirp whose slope is the self-
torque. Although wqðt; fÞ in Eq. 6 is a continuous
function of fð�p ≤ f < pÞ, the null intensity re-
gion in the crescent profile of the beam (see inset
in Fig. 2A) avoids the frequency discontinuity.
However, further studies on this region of “struc-
tured darkness” (61) could be beneficial for a
thorough fundamental understanding of self-
torqued beams.
We present in Fig. 2 the HHG spectrum along

the azimuthal coordinate obtained in our full
quantum simulations for driving pulses of t ¼
10 fs and time delays of (A) td ¼ t ¼ 10 fs and
(B) td ¼ �t ¼ �10 fs, respectively. The intensity
crescent shape of the whole HHG beam is shown
in the inset of Fig. 2A. Both spectra reflect the
presence of an azimuthal chirp that depends on
the harmonic order, and thus, an associated self-
torque, whose sign depends on td. The full quan-
tum simulations are in perfect agreement with
the analytical estimation given by Eq. 6 (gray
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Movie 1. Comparison
between the temporal
evolution of phase,
intensity, and OAM
content of self-torqued
beams and two delayed
vortex beams.Temporal
evolution of the phase
(left column), intensity
(central column), and
OAM distribution along
the divergence (right col-
umn) of a self-torqued
beam (top) and a combi-
nation of two time-
delayed vortex beams.
The self-torqued beam
(top) corresponds to the
11th harmonic generated
through HHG (‘1 ¼ 1,
‘2 ¼ 2, t ¼ 10 fs, td ¼ 10 fs,
l1 ¼ l2 ¼ 800 nm) calculated using the thin slab model (see supplementary text section S2),
whereas the vortex combination (bottom) corresponds to two time-delayed vortex beams (‘1 ¼ 11,
‘2 ¼ 22, t ¼ 10 fs, td ¼ 10 fs, l1 ¼ l2 ¼ 800 nm).
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dashed lines). This result shows that the spectral
bandwidth of the harmonics can be precisely
controlled via the temporal and OAM properties
of the driving pulses. Moreover, it provides a
direct, experimentally measurable parameter to
extract the self-torque, without measuring the
OAM of each harmonic at each instant of time
with subfemtosecond resolution, which is cur-
rently unfeasible. This reasoning implies that a
beamwith azimuthal frequency chirp would also
exhibit self-torque. Up to now, however, HHG
beams have only been driven either by spatially
chirped pulses [such as the so-called “attosecond
lighthouse” technique (64, 65)], or angularly
chirped pulses through simultaneous spatial
and temporal focusing, which (in theory) yield
spatially chirped harmonics (66). However, to
the best of our knowledge, azimuthal chirp—
and thus, self-torque—has not been imprinted

into EUV harmonics or in any other spectral
regime.

Experimental confirmation of the
self-torque of EUV beams

Light beams possessing a self-torque were exper-
imentally generated by driving the HHG pro-
cess in argon gas using two collinear, IR vortex
beams with topological charges ‘1= 1 and ‘2= 2
that are derived from a high-power, ultrafast re-
generative amplifier (Fig. 3A). Briefly (see mate-
rials and methods for full details), the two vortex
beams are spatiotemporally overlapped to yield
a mixed OAM driving mode, which is then di-
rected onto a supersonic expansion of argon gas
to generate self-torqued EUV beams (q= 13 to 23,
~20 to 36 eV). The presence of self-torque in the
emitted high harmonics is confirmed by using a
cylindrical mirror–flat-grating EUV spectrometer

that serves to transform the self-torque-induced
azimuthal chirp into a spatial chirp, which is
then spectrally resolved as the (1D) focusing har-
monic beam is dispersed (Fig. 3B). This simulta-
neous mapping of the azimuthal frequency chirp
and high-harmonic comb to the same spectral
axis is achieved by aligning the intensity crescent
of the EUV beam [see materials and methods
and (54)] such that its intensity-weighted center
of mass (COM) is orthogonal to the mutually
parallel focusing and dispersion axes of the EUV
spectrometer. In this configuration, the azimuthal
frequency chirp is mapped to a linear spatial
chirp by the cylindrical mirror, and this resulting
spatial chirp in each harmonic is then resolved
by the grating. The resulting spatial-spectral dis-
tribution is then imaged via a high–pixel density,
EUV charge-coupled device (CCD) camera, which
allows for the simultaneous measurement of
the azimuthal angular extent of the self-torqued
beams (54) and the induced azimuthal frequency
chirp with a high precision. High-resolutionHHG
spectra are collected as a function of time delay
between the driving pulses by scanning the rela-
tive time delay between the two beams in two-
cycle increments (i.e., 5.272 fs), which ensures
that the HHG beam remains aligned to the spec-
trometer at each experimentally sampled time
delay. Such exquisite control (fig. S6) allows us
to simultaneously measure both the self-torque-
induced frequency chirp of the HHG beams and
the azimuthal angular range over a large range of
relative time delays.
Figure 4 shows the comparison between ex-

perimental and theoretical results. Panels (A)
and (B) show the experimental and theoretical
spatial profile of the high harmonic beams, re-
spectively. The crescent shape of the measured
spatial profile already gives a clear indication
of the presence of all intermediate OAM con-
tributions from q‘1 to q‘2, and thus, of the crea-
tion of self-torqued beams. Panels (C) to (F) show
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Fig. 2. Azimuthal frequency chirp of self-torqued beams. Simulated spatial HHG spectrum
along the azimuthal coordinate ðfÞ when the time delay between the driving pulses is (A) 10 fs
and (B) −10 fs. The self-torque of light imprints an azimuthal frequency chirp, which is different
for each harmonic, as indicated by the gray dashed lines (obtained from Eq. 6). The azimuthal fre-
quency chirp serves as a direct measurement of the self-torque of each harmonic beam. The inset
of (A) shows the intensity profile of the HHG beam, as well as the definition of the azimuth, f.

Fig. 3. Experimental scheme for generating and measuring light beams with a self-torque. (A) Two time-delayed, collinear IR pulses with the same
wavelength (790 nm), but different OAM values, are focused into an argon gas target to produce harmonic beams with self-torque. (B) An EUV
spectrometer, composed of a cylindrical mirror and flat-grating pair, collapses the HHG beam in the vertical dimension (lab frame y axis), while preserving
spatial information, and thus the azimuthal extent in the transverse dimension (lab frame x axis). (Lower-right inset) The cylindrical mirror effectively
maps the azimuthal frequency chirp into a spatial chirp along the lab frame x axis (i), which is then dispersed by the grating (ii).
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the azimuthal chirp of the high harmonics for
time delays of td = 50.4 (C and D) and −50.4 fs
(E and F), respectively. The different slope of
the azimuthal chirp, and the excellent agree-
ment with the analytical theory given by Eq. 6
(gray dashed lines), and the full quantum sim-
ulations, confirm the presence of self-torque in
the retrieved harmonic beams. Driving pulses of
t ¼ 52 fs have been used in our full quantum sim-
ulations to mimic the experimental parameters.
In Fig. 5, we plot the experimental (solid lines)

and theoretical (dashed lines) self-torques ob-
tained for the 17th (A), 19th (B), 21st (C), and
23rd (D) harmonics as a function of the time
delay between the IR drivers, for the same pa-
rameters as in Fig. 4. As the time delay is varied,
so too is the degree of azimuthal frequency chirp
across the entire harmonic spectrum (according
to Eqs. 2 and 6), verifying the dynamical build-up
of OAM in the self-torqued beams. The self-
torque is extracted from themeasured azimuthal
spectral shift (see Fig. 4F) and the azimuthal
extent of the HHG beam [see (54) for details],
using Eq. 6. The excellent agreement and, es-
pecially, the overall trend, unequivocally dem-
onstrate the presence of a temporally evolving
OAM content and, thus, a self-torque, in all the
EUV harmonics generated.

Self-torque versus time duration and
EUV supercontinuum generation

EUV beams with self-torque can be generated
and controlled via the properties of the driving
IR vortex beams, with optimal self-torque pro-
duced when the laser pulse separation is equal to
their duration (i.e., td ¼ t), where all intermed-
iate OAM contributions appear with a similar
weight (fig. S1). To illustrate this concept, Fig. 6A
shows the simulated self-torque obtained for dif-
ferent IR driving pulse durations.
In particular, if driven by few-cycle pulses, the

self-torque—and thus the azimuthal chirp—is
high, with large amounts of OAM building up on
an attosecond time scale (Fig. 6B, where t ¼ 4 fs).
If the torque is high enough, the harmonic fre-
quency comb sweeps along the azimuth, encap-
sulating all the intermediate frequencies between
the teeth of the harmonic comb. Thus, the fre-
quency chirp of time-dependent OAM beams
not only is useful to measure the self-torque but
also represents an approach to obtain an EUV
supercontinuum, as shown in the right inset of
Fig. 6B. This allows for the creation of a very
precise, azimuthally tunable frequency comb in
the EUV and a supercontinuum spectrum that is
complementary, yet distinct, from that of other
approaches (67–69).

Conclusions

We have demonstrated that light beams with
time-dependent OAM can be created, thus carry-
ing optical self-torque. This property spans the
applications of structured light beams (1) by ad-
ding a new degree of freedom, the self-torque,
and thus introducing a new route to control
light-matter interactions. In particular, ultrafast,
short-wavelength, high harmonic beams with
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Fig. 4. Azimuthal frequency chirp and experimental measurement of the self-torque of EUV
beams. (A and B) Experimental and theoretical spatial intensities of the HHG beams, after passing
through an Al filter, comprising harmonics q = 13 to 23. (C to F) Spatial HHG spectrum along the
azimuthal coordinate ðfÞ from experiment [(C) and (E)] and quantum simulations [(D) and (F)],
when the time delay between the driving pulses is [(C) and (D)] 50.4 fs and [(E) and (F)] −50.4 fs.
The self-torque of light imprints an azimuthal frequency chirp, which is different for each
harmonic, as indicated by the gray dashed lines (obtained from Eq. 6). (G and H) Theoretical
and experimental harmonic lineouts obtained at f = –0.8 rad (green), f = 0.0 rad (yellow), and f =
0.8 rad (blue) for td= 50.4 fs.The azimuthal frequency chirp serves as a direct measurement of the
self-torque of each harmonic beam. Differences in mode size of the theoretical and experimental EUV
beam are due to slight differences in the fundamental beam mode sizes (see materials and methods).
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self-torque can be naturally produced by taking
advantage of the conservation laws inherent to
extreme nonlinear optics. This capability can yield
distinctively structured light beams that can de-
liver optical torque on the natural time and

length scales of charge and spin ordering, e.g.,
femtosecond and nanometer. Finally, the self-
torque of light imprints an azimuthal frequency
chirp, which allows a way to experimentally
measure and control it. Moreover, if the self-

torque is high enough, the harmonic frequency
comb sweeps smoothly along the azimuth, and
if integrated, a high-frequency supercontinuum
is obtained, thus presenting exciting perspectives
in EUV and ultrafast spectroscopies of angular
momentum dynamics.

Materials and methods
Theoretical approach for full quantum
simulations describing the self-torque
of OAM high harmonic beams

To calculate the HHG driven by two time-delayed
OAM pulses, we use a theoretical method that
computes both the full quantum single-atom
HHG response and subsequent propagation (55).
The propagation is based on the electromagnetic
field propagator, in which we discretize the tar-
get (gas jet) into elementary radiators (55). The
dipole acceleration of each elementary source is
computed using the full quantumSFA, instead of
solving directly the time-dependent Schrödinger
equation, yielding a performance gain in com-
putational time when computing HHG over the
entire target (55). At the microscopic single-atom
level, and for the parameters considered in this
work, the spatial phase of the electric field can be
well approximated as homogeneous in the vici-
nity of the atom where the wave packet dynam-
ics take place. We assume that the harmonic
radiation propagates with the vacuum phase
velocity, which is a reasonable assumption for
high-order harmonics. Propagation effects in
the fundamental field, such as the production
of free charges, the refractive index of the neu-
trals, and the group velocity walk-off, as well as
absorption in the propagation of the harmonics,
are taken into account. Although we account for
the time-dependent nonlinear phase shifts in the
driving fields, nonlinear spatial effects are not
taken into account.We consider two vortex beams
with ‘1 ¼ 1 and ‘2 ¼ 2, whose spatial structure
is represented by a Laguerre-Gaussian beam [see
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Fig. 5. Experimental confirmation of the self-torque of light in EUV beams. Self-torques
obtained as a function of the time delay between the IR laser drivers for the 17th (A), 19th (B), 21st
(C), and 23rd (D) harmonics. The experimental data are shown in solid-color lines, the results from
full quantum simulations in dashed lines, and the analytical estimation given by Eq. 2 in solid black
lines. The shaded regions depict the experimental uncertainty in the retrieved self-torque for each
harmonic order, which themselves comprise the standard “one sigma” deviation of the measured
self-torque (i.e., 68% of the measured self-torque values will fall within this uncertainty range).

Fig. 6. Manifestation of self-torque for EUV supercontinuum generation. (A) Self-torque as a function of pulse duration for the 17th and 23rd harmonics,
for time delays equal to their pulse duration. Solid lines are calculated from Eq. 2, and the squares correspond to results from full quantum simulations.
(B) Spatiospectral HHG distributions when driven by two 800-nm, 4-fs pulses with ‘1=1 and ‘2=2, delayed by 4 fs with respect to each other.The optical
self-torque imprints an azimuthal frequency chirp, which is different for each harmonic order, as indicated by the gray dashed lines (obtained from Eqs. 5 and 6).
The right panel shows the HHG yield at p/2 rad (blue line, and white vertical dashed line in B) and the spatially integrated supercontinuum (red line).
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eq. S13 in (54)]. The laser pulses are modeled
with a sin2 envelopewhose FWHM in intensity is
t , and centered at 800 nm in wavelength. The
amplitudes of the two fields are chosen to obtain
the same peak intensity (1:4� 1014 W/cm2) at fo-
cus for each driver at the radii ofmaximum super-
position (i.e., the brightest intensity rings overlap
spatially). The driving beam waists are chosen to
overlap at the focal plane (beingw1 ¼ 30:0mmfor
‘1, and w2 ¼ w1=

ffiffiffi
2

p ¼ 21:4 mm for ‘2) where a
10-mm-wide Ar gas jet flows along the direction
perpendicular to the beam propagation, with a
peak pressure of 667 Pa (5 torr). The low thick-
ness of the gas jet is due to computational time
limitations; however, on the basis of our previous
results of OAM-HHG (18), we do not foresee any
fundamental deviationwhen considering thicker
gas jets closer to the experimental jet used in this
work (a diameter of 150 mm).

Experimental setup for the generation
and characterization of self-torqued
EUV beams

The generation of self-torquedhigh-harmonics is
achieved by impinging a pair of collinear, lin-
early polarized, nondegenerate IR-vortex beams
onto a supersonic expansion of argon gas. The
IR vortex beams (with topological charges of
‘1 ¼ 1; ‘2 ¼ 2) are derived from a high-power,
ultrafast regenerative amplifier (790 nm, 40 fs,
9 mJ, 1 kHz, KMLabs Wyvern HE). The near full
output of the amplifier is sent into a frequency-
degenerate Mach-Zehndertype interferometer,
which separates and later recombines the two
driving pulses to form the dual-vortex IR driver.
In each spatially separated arm of the interfer-
ometer, a combination of half-waveplates, faceted
spiral phase plates (16 steps per phase ramp,
HoloOr), and independent focusing lenses result
in each beam possessing linear polarization, non-
degenerate topological charges, and similarly
sized intensity rings at focus. Independent irises
in each beam path allow for fine tuning of the
transverse mode size at focus and are used to
match the size of themaximum-intensity ring for
each driver. Using this strategy, the two driving
beams possessed a full diameter of the intensity
of ∼65 mm—corresponding to waists sizes ofw‘1

≈45 mm andw‘2 ≈ 33 mm (70). The driving laser
modes themselves, both individually and com-
bined, are characterized by amodified Gerchberg-
Saxton phase retrieval algorithm, which solves
for the phase of a propagating light beam and
allows extraction of the OAM content of the IR
vortices (see supplementary text section S4), thus
ensuring high-quality vortex beams for driving the
HHGprocess (movie S1). Thismodified Gerchberg-
Saxton method acquires and retrieves OAM
content much faster than our previous charac-
terization method using ptychography (71), but
it is limited to nonmultiplexed (i.e., single-color)
beams. A high-precision, high-accuracy, and high-
repeatability delay stage (Newport, XMS-160S) is
used to control the relative time delay between
the two driving pulses, with subfemtosecond pre-
cision. The pulses are recombined at the output
of the interferometer using a low-dispersionbeam-

splitter and then directed onto the supersonic
expansion of argon gas in a vacuum chamber.
We take extreme care to ensure that the two
arms experience similar dispersion by using
the same thickness and design of optics in each
arm of the interferometer, which helps to reduce
effects from carrier-to-envelope phase variation
in the separate beam paths, while also ensur-
ing similar pulse widths. Finally, the use of a
frequency-degenerate Mach-Zehnder interfer-
ometer results in a 50% intensity loss of each
driver when combined at the interferometer’s
exit; however, this configuration proved ideal to
minimize pulse dispersion, while also allowing
for independent control of the polarization and
topological charge of the driving beams.
Self-torqued high harmonics are generated via

the HHG up-conversion process, then dispersed
in 1D via a cylindrical mirror–flat-grating EUV
spectrometer and finally collected by a CCD
camera (Andor Newton 940). A 200-nm-thick
aluminum filter blocks the residual driving light
before entering the spectrometer—while passing
harmonics over its transmission range, ~17 to
72 eV—and all harmonic spectra are corrected for
the transmission of the EUV beamline. To align
the resulting HHG crescent to the spectrometer,
we exploit the natural physics of time-delayed
OAM beams. When two vortex beams with ‘1= 1
and ‘2 = 2 are superposed, such that their
amplitudes and intensity rings are equal, the
resulting intensity distribution exhibits a char-
acteristic crescent shape. The azimuthal orien-
tation of the COM of the intensity crescent can
be controlled via a relative phase delay between
the two single-mode OAM drivers, such that a
full-cycle phase delay (i.e., 2.635 fs for the 790-nm
pulses used here) returns the intensity crescent
to its initial position. By carefully adjusting the
time delay between the two single-mode IR
vortex beams, we can control the alignment of
the intensity crescent of the driving beam [see
(54)], and so to the resulting crescent-shaped
harmonic beam (because, to first order, the
HHG beam profile mimics the intensity distri-
bution of the driving beam). Once the harmonic
beam is aligned to the spectrometer, the rel-
ative phase delay between the driving beams is
scanned in two-cycle increments (i.e., 5.272 fs),
which ensures that theHHGbeam remains aligned
to the spectrometer at each experimentally sam-
pled time delay. Such exquisite control (see fig.
S6) allows us to simultaneously measure both
the self-torque-induced frequency chirp of the
HHG beam and the azimuthal angular range
(see supplementary text section S7) with a high
resolution.
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manipulate nanostructures and atoms on ultrafast time scales.
time-dependent angular momentum, called self-torque. Such dynamic vortex pulses could potentially be used to 
controlled time delay between the pulses allowed the high harmonic extreme-ultraviolet vortex beam to exhibit a
time-delayed vortex beams with different orbital angular momenta through the process of high harmonic generation. A 

 generated dynamic vortex pulses by interfering two incidentet al.enhance optical communications and imaging. Rego 
Structured light beams can serve as vortex beams carrying optical angular momentum and have been used to

Pulses with a twist and torque
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